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Abstract

The Linear Quadratic Guassian / Loop Transfer Recovery (LQG/LTR)
methodology has been widely applied to control system design, particularly in
Multiple Input Multiple Output (MIMO) systems. One can construct a target loop
transfer function by designing a Kalman filter to meet the performance and stability
requirements, then recover the stability robustness of Kalman filter by tuning a Linear
Quadratic Regulator (LQR). By duality, one may design the LQR first, then recover
with Kalman filter. The outcome of this design is that the designed compensator will
often invert the plant's dynamics. This plant inversion may be undesirable if the plant
has lightly damped poles or moderate frequency unstable poles and non-minimum
phasc zeros. This thesis use Static Output Feedback (SOF) method to reassign the
open loop plant poles. The SOF method uses partial output feedback to form a inner
loop; with the inner loop closed the poles can be assigned to a better location.
Alternatively the Robust Eigenstructure Assignment (REA) algorithm was used to
reassign the closed loop Kalman filter poles and preserve the system robustnes, then
design the LQR to recover the Kalman filter loop shape. Results show that the SOF
method can improve system performance and stability, especially for MIMO system
design. The REA method is nore flexible for eigenstructure assignment and SISO
system LQG/LTR design, but not as flexible for MIMO system LQG/LTR design,

where frequency domain loop transfer function shaping is required.
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IMPROVEMENTS TO LQG/LTR METHODOLOGY FOR PLANT
WITH LIGHTLY DAMPED OR LOW FREQUENCY POLES

I Introduction

A decade ago, aircraft flight control system design used single channel
feedback control to achieve desired closed loop properties. The approaches were
simple: measure the output (response), amplify or attenuate the signal by using gain
adjustment, then feed it back to achieve desired system response. Design tools, like
root locus, Bode and time response plots were widely applied in aircraft Single Input
Single Output (SISO) design, which satisfactorily handled single channel system
command and response relations. However, aircraft design goals have become very
complex in recent years with more maneuverable, accurate and safe flight control
systems in demand. For this reason , more controls like flaprons, canards and thrust
vectoring were added. Thus, more states or responses can be controlled. The
resulting flight control system is not SISO but Multiple Input Multiple Output
(MIMO). MIMO design using SISO techniques is inefficient and tedious and
sometimes coupled dynamics are excited thus making SISO design tools totally
useless. In the late 70's, MIMO design methodologies like Linear Quadratic
Regulator (LQR), Kalman Bucy filter, Linear Quadratic Gaussian (LQG) or Linear
Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and eigenstructure
assignment were developed, allowing control engineers to use these methodologies to
achieve better performance and stability.

The LQG/LTR design methodology uses a full state Linear Quadratic

Regulator (LQR) to satisfy the performance and stability robustness specifications,




then recovers the stability robustness by tuning the Kalman filter. In a dual this
procedure, the Kalman filter can be designed and then recovered by tuning the LQR.
This method is an improvement of Linear Quadratic Gaussian (LQG) which recovers
the stability margins. The LQG/LTR methodology has been used to design several
successful control systems for aircraft engines, submarines and unmanned aircraft [3,
17, 19]. The wcll-described step-by-step procedures and available softwares, makes
LQG/LTR a convenient tool for control system design. But LQG/LTR has some
limitations on achievable performance. For instance, if the plant has a right-half-plane
zero (non-minimum phase zero), LQG/LTR won't recover the designed transfer
function at the zero's frequency. If the non-minimum phase zero is within the system
bandwidth, the system performance will be degraded. Another major problem with
LQG/LTR is that the compensator will tend to invert the plant and replace it with
desired dynamics. Uncertainty in lightly damped poles in the plant (like lightly
damped short period mode or Dutch roll mode), causes incomplete pole-zero
cancellation and can lead to a closed loop system with a lightly damped pole. This
thesis is a study on improving the LQG/LTR methodology for plant with lightly
damped poles, so that the undesired low damping time response of LQG/LTR can be
prevented.

As stated before, output feedback can improve system performance and
stability. States feedback gives the designer the capability to modify every mode of
the open loop plant; however, this is not practical when the states are not easy to
measure or cost t0o much to measure. Thus, output feedback is a simpler and more
affordable approach. When the compensator has no dynamics, this method can be
named Static Output Feedback (SOF) or Gain Output Feedback. It use output
feedback with a constant gain to reassign the svstem closed loop poles . When the

dimension of the output is greater than the dimension of control, the number of poles
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that can be assigned is the same as the dimension of the output. By moving the
plant's lightly damped poles with Static Output Feedback method, the undesired plant
inversion of LQG/LTR can be prevented.

Eigenstructure assignment is a design technique to achieve desired
eigenvalues and eigenvectors. It has great flexibility in determining system
pertormance, response shape and stability. Combining eigenstructure assignment
with LQR or Kalman filter design can achieve good system performance and retain the
robustness of the optimal controller. This method is named Robust Eigenstructure
Assignment (REA). In the LQG/LTR design process, this method can be used to
assign the LQR or Kalman filter closed loop poles to desired locations, then by the
separation principle of LQG, the LQG/LTR closed loop system will have no undesired
poles.

The two methods above will be studied to determine the effectiveness of how
they may improve LQG/LTR closed loop system characteristics to avoid undesired

plant inversion.

1.1 Problem Statement
Consider a linear time-invariant model with n dimension of states, m

dimension of controls and r dimension of outputs. It has dynamics in state space form

X ) =Ax® +Bu@ ()
y ©=Cx@ (2)
The transfer function matrix of the design model, often a square matrix, is given in

Laplace domain as

G(s) =C d(s) B (3)




d(s)=(sI-A)l (4)
We shall assume that [ A, B ] is stabilizable, i.e., all unstable modes of Eq (1) are
controllable, and [ A, C ] is detectable, i.e., all unstable modes in Eq (1), (2) are
observable. Then the LQG or LQG/LTR compensator can be obtained, with the full
LQG compensator and plant model as in  Figure 1.

| LQG compensator
| K(s) '
r la b +¢ X
— g ~ Kf /s | _Kc
|
| A
I
I

o ¥
(=78 J

Figure 1 LQG Compensator and Plant Model

Following the LQG/LTR two step design procedures described by Ridgely [20: 9-1 ~
9-15] and Athans [3:1289-1296], break the loop at the plant output (point a) and
design the Kalman filter first by choosing a fictitious disturbance matrix I" and noise

intensity |t , to approximate the loop transfer function,

1
Vi

(5)

where K¢ is Kalman filter gain matrix, o; is singular value. Next design LQ Regulator




with weighting matrices

Q. =H"H + q2CTVC (6)

Re=pl 7
where H is a weighting matrix on state deviation. HTH is symmetric, positive
semidefinite, and normally chosen to be a unity matrix. p is the weighting on controls.
By selecting q, a scalar, with increasingly larger values, as g2 — oo, the LQ

Regulator will gradually recover the target loop shape of the Kalman filter Tk, so that

G()K(s) = CPB [(C<I>B)_1C(DK¢] =G ) Kgormr(s) (8)

The LQG/LTR compensator design will normally invert the plant's dynamics and
replace it with the compensator's dynamics. The compensator will have zeros close to
the plant open loop poles and when the open loop plant has lightly damped poles, like
a pair of low damping Dutch roll poles, the compensator will put its zeros close to the
poles. If the measurement of pole location involves any degree of uncertainty, then the
closed loop system may not have exact pole-zero cancellation, resulting in lightly

damped closed loop poles. This is a undesired design result of LQG/LTR.

1.2 Background

The LQG/LTR design procedure proposed by Doyle and Stein [5: 4 -16] has
been proven to be a simple and effective design methodology for scalar and
multivariable systems. The LQG/LTR design procedure offers loop transfer function
shaping techniques for design in the frequency domain with the properties of an
optimal full state LQR or Kalman filter, then frequency -wise recovery to the desired

loop shape at either the plant input or output. LQG/LTR thus obtains good




performance and stability robustness. When the plant has non-minimum phase zeros,
full recovery of the designed transfer function is not possible; the final loop shape
does not have desired shape and system performance and stability are affected. This
non-minimum phase zero problem has been studied by researcher like Stein and
Athans [2] and Zhang and Freudenberg {23]. A suggested method is to select
sensitivity and complementary sensitivity weightings to achieve H type
optimization, by factorization to a minimum phase plant with non-minimum phase
constraints. When the open loop plant has lightly damped poles, the effect of plant
inversion and uncertainty in the plant dynamics is to cause the closed loop system to
have undesired low damping, resulting in poor time domain characteristics. This
shortcoming of undesired inversion of lightly damped plant poles in LQG/LTR design
hasn't been studied or corrected by any known researcher.

Static Output Feedback (SOF) or Gain Output Feedback is a method of
feeding back the measurable output with a constant gain to assign desired
cigenvalues (and eigenvectors). It is a more practical and feasible method than full
state feedback. Moreover, this method modifies the system response and mode
shape without increasing the dimension of the closed loop system. Several papers on
the theory have shown the assignability of the eigenvalues and eigenvectors using
constant output feedback [5, 14, 22]. Andry and Shapiro showed an algorithm to
calculate the compensator constant gain matrix to achieve eigenvalue and eigenvector
assignment [1]. Those studies showed that with a system as in Eq(1) and (2),
max|[m, r] number of eigenvalues can be assigned, and max|[m,r] eigenvectors can be
assigned with min[m, r] clements of the cigenvectors arbitrarily chosen. By using
Static Output Feedback to assign the pole locations of the open loop plant before the
LQG/LTR design, undesired plant inversion should be avoided.

Combined cigenstructure assignment and linear quadratic optimal controller




design is a method which utilizes the flexibility of eigenstructure assignment and the
robust property of LQR or Kalman filter to design a closed loop system with both good
time domain characteristics and robustness. This method was first introduced by
minimizing a cost function that provides a tradeoff between desired and achievable
cigenvalues and eigenvectors. Harvey and Stein [10] developed a method that uses
the asymptotic propertics of LQR to place eigenvalues and uses a linear projcction to
determine the achievable eigenvectors. Robinson [22] developed an algorithm using
MATLAB software to provide eigenvalue placement using the LQR. Huckabone [11]
wrote a Fortran program to assign the closed loop eigenstructure as close to desired
as possible within the constraints of the LQR stability margins. In this thesis,
Huckabone's Fortran program was used to find the achievable closed loop eigenvalues
tor Kalman filter design, and the returned parameters were used for LQG/LTR design.
By using this method, not only were the frequency domain properties of loop transfer

A\ ]

function shaped, but the eigenstructure of the closed loop system was specified.




1.3 Organization

This thesis is organized as follows:
Chapter II: Development of the theories for LQG/LTR, Static Output Feedback, and
Robust Eigenstructure Assignment. Definition of performance and stability

robustness.

Chapter III: A-4 aircratt SISO and MIMO system designs, using nominal, Static
Output Feedback, and Robust Eigenstructure Assignment methodologies. Display all
the design results and do a detailed analysis. The results from three designs are then

compared with each other.

Chapter IV: X-29 experimental aircraft MIMO system design and analysis, using only
nominal and Static Output Feedback methodologies, compare the results of these two

design.

Chapter V: Summarized the design results and analysis, then suggest study

directions for further research.

Appendix A: Design model state space A and B matrices.

Appendix B: MATLAB M-Files for the Static Output Feedback designs.




Il Theory

2.1 Background

The purpose of control system design is to aid the product or process — the
mechanism, the robot, the chemical plant, the aircraft or whatever — to do its job.
Feedback theory has been developed to achieve the higher level of this goal; feedback
design can be used to stabilize an otherwise unstable system, reduce the error in
command following due to plant disturbance, and reduce the sensitivity of a closed
loop transfer function to variations in system parameters. For a system with the

tfeedback loop given in Figure 2

d(s)‘
+F y(s)

r(s)
K(s) S| Gs)

+ n(s)

Figure 2 Linear System Compensator and Plant Biock Diagram

the control design problem is to specify the dynamic compensator K(s), for the plant G

described by

X ()= AX(s)+ B u(s) (9)

y (8) = C x(s) (10)

with n being the state dimension , m the control dimension , and r the output




dimension . The compensator has r inputs ( the tracking error or state deviation
signal) and m outputs ( the input to the plant ), is assumed to be linear, time-
invariant, and should meet specification related to:

(a) Nominal stability

(b) Nominal performance

(c) Stability robustness to modeling error
The most critical specification is the need to be stable and maintain this stability when
encountering plant parameter variations.

LQR is a method for designing a compensator to stabilize a system and keep
the plant in equilibrium. As long as the plant is stabilizable and detectable, the LQR
compensator always results in a guaranteed stable closed loop system [24]. The gain
and phase margins exhibited by Linear Quadratic design based on full state access are

given by

-6db < Gain Margin < oo
- 60 deg < Phase Margin < 60 deg.

However, access to all the states is not always possible, so an observer is
often required to estimate the states which are not accessible. The estimated state is
then compared with the measured output and gained so as to converge the error
between actual and estimated state with the effects of noise minimized. This is the
Kalman filter. The LQG compensator is a combination of the Kalman filter and LQ
Regulator. A well known consequence of the observer based compensator is the loss
of guaranteed stability margins [ 7 ]. Doyle and Stein [ 6 ] developed an LQG design
procedure that recovers the desired robustness properties of LQR. This procedure
later came to be known as LQG/LTR. LQG/LTR is an integrated procedure in the

sense that it uses both frequency and time domain concepts to achieve the
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pertormance and robustness requirements. It is accomplished by tuning the state and

control weighting matrices in the quadratic cost function

J = fm(xTQx+uTRu)dt
. (11)

to recover the LQ design. Q and R are weighting matrices for LQR or Kalman filter,
depending on whether the system loop is broken at plant input or output, respectively.
Either approach is valid and the choice is driven by the nature of the plant and the
location of the uncertainty in the system.

Uncertainty in the plant dynamics and measurements may be modeled as either
injected into the input of the plant, or appearing as an additive disturbance at the plant
outputs. Input uncertainty can arise from unknown environmental forces acting on the
system; for instance, the nonlinearity of an actuator or flexibility in the control system
mechanism. Such a system would yield highly predictable outputs when the inputs are
accurately known, but would still display some uncertain outputs as the result of
uncertain inputs. Output uncertainty for aircraft, like aeroelasitic effects of the
structure when the aircraft flies through the air; sensor measurement noise, etc.,
affects system outputs. For this thesis we deal with output uncertainty only. The
uncertainty involved in this study is limited to unstructured, multiplicative uncertainty

as shown in Figure 3

E(s)

u(s) +F y(s)
Go(s) = O)—

Figure 3 Output Multiplicative Uncertainty
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Thus

G(s) = [T+ E(s) ] Go(s) (12)
where G(s) is the true plant transfer function and Gy(s) is the nominal plant transfer
function. We will design the Kalman filter with recovery through tuning the LQ
Regulator in LQG/LTR design. Ridgely and Banda's Technical Report [ 20] and
Athans's tutorial [ 2, 3] have exrellent presentation of the detailed procedures about
designing an LQG/LTR compensator. Although LQG/LTR is shown to produce a
controller which provides good performance and stability, there still exist some
shortcomings. When the plant has non-minimum phase zeros they hamper the fully
recovery of stability robustness at frequencies near the zero; when the plant has
lightly damped pole, they cause closed loop system to have a resonant response;
when the plant has moderately high frequency unstable poles the system bandwidth
rises. In anticipation of unstable and lightly damped poles, the techniques of Static
Output Feedback and Robust Eigenstructure Assignment can be used to improve pole
location prior to application of LQG/LTR. The following theory development will
describe LQG/LTR design and the pole assignment techniques.

2.2. LQG/LTR

The LQG/LTR methodology seeks to design the compensator K(s) so that
stability robustness and performance specifications are met. LQG/LTR is applicable
to both SISO and MIMO design, but is inherently a multivariable design method. By
this we mean that LQG/LTR method does not reduce the MIMO design problem into a
sequence of SISO design problems, instead, it solves the MIMO design problem

directly. The steps and philosophy are independent of the number of states, controls
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or output variables. When applying LQG/LTR method to SISO and MIMO sysiems,

several factors should be noted:

(a) Matrix multiplication is not commutable in the MIMO case, so the open loop
transfer function of breaking the loop at plant input, which is KG, is different from
the open loop transfer function of breaking the loop at plant output, which is GK.

Thus, in MIMO design, system performance and stability robustness need to be
considered at both plant input and output.

(b) For SISO system design we use classical Bode magnitude and phase angle plots
to evaluate system performance. In MIMO systems the transfer functions are a
matrix of transfer functions, so the magnitude of the transfer function matrix is best
expressed by a norm of the matrix — the singular values of the transfer function.
These can be plotted frequency -wise, with the .. . imum and minimum singular
value curves containing the fregzncy domain information.

(c) Measuring gain and phase margins by analyzing the Nyquist plot is used for
SISO systems. Although MIMO system gain and phase margins may also be
derived by the same concepts as Nyquist plot, it is much more complicated.
Rather, margins are often defined as Independent Gain and Phase margins, which
are calculated by using the return difference, sensitivity or complementary
sensitivity of the transfer function. These calculations will be discussed later in
this section.

Generally, LQG/LTR procedures for a MIMO system is more complex than for

a SISO system. This theory development section will only discuss MIMO system

LQG/LTR design.
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2.2.1. Singular Values. In the previous section we briefly mentioned that the
determination of the magnitude of a SISO transfer function and a MIMO transfer
function is different. For the SISO problem it is relatively easy; in a MIMO problem,
the transfer function is a matrix of transfer functions. The size of a MIMO transfer
function matrix is found by defining the norm of the matrix. The singular value is one of
the norms used for determining the size of a matrix. Singular values are denoted by
o, and are detined by

6. (A) = VA (AA") = V2 "A"A)

(13)

where i = 1,2,....., min [rows in A, columns in A], A is a matrix of complex numbers,
A" denotes the complex conjugate transpose of A, and A, is the ith eigenvalue. The
notation describing the maximum and minimum singular values is ¢ and ¢

respectively. The most common vector norm, the Euclidean norm, is defined by

T

The Euclidean norm of a vector is used in defining the spectral norm of a matrix, as

given by

IA xlly

AL, = s
2 Sup IIx 1l (15)

where x # (). The supremum is often difficult to calculate directly, so the following is

useful
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lAl, = max {VA, (A"A) }
max {VA, (AA") }

=06 (A) (16)

where i = 1,2,...., min [ rows in A, columns in A]. Another useful identity involving

singular values is

A, = —1 -
S A) (17)

Some of the singular values properties useful for deriving performance and stability

robustness criteria can be found in Ridgely's Technical Report [ 20: 2-9~2-13].

2.2.2. Performance and Stability Robustness Requirement Consider the
system in Figure 2. We can derive the input and output relationships
e=r-n-y (18)
y = d+GKe (19)

where e is the error between reference input and output. Substitute Eq (18) into Eq

(19)

y=d+GKr-GKn-GKy (20)
or

[1+GK]y = d+GK[r-n] (21)
then

y = [I+GK]!GK[r-n]+[I+GK]!d (22)

or

15




y = |[I1+GK|'GKr-|[I+GK|!'GKn+{I+GK]!d (23)

The relation of ¢omumand | disturbance and noise to output can be observed from Eq

(23).
We define
GK loop transfer function
I+GK return difference transter function
[I+GK ]! sensitivity, denoted as S
[1+GK|IGK complementary sensitivity or closed loop transfer function,

denoted as T

2.2.2.1 Tracking Performance Output following of the reference signal
is usually a system requirement. This reference signal is normally confined to some
frequency band. For an aircraft, pilot input frequency normally is low and we assume
the noise to be negligible at this frequency, by linearity, ignore d for now. Then Eq

(23) gives

y = [I+GK ! GKr (24)

For good command tracking, we need

[I+GK]'GK = 1 (25)

When GK >> I, we have
T =[I1+GKJ!GK

mn

{GKJIGK =1 (26)

or from Eq (24) and with the equality of
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T=1-S 27

we get the relationship of

y = [I-S]r (28)

Thus, for good command tracking, we need S to be small. We know that

S =[I+GK]! (29)
This means we have to have the singular values of the open loop transfer function GK
large for small sensitivity. To say a MIMO transfcr function matrix has "small”
magnitude is equivalent to the maximum singular value is small, and "large"
magnitude is equivalent to the minimum singular value is large. Therefore, from Eq
(26) and (29), we can conclud that for good command tracking we need to have g [
GK ] large and thus low sensitivity at all frequencies where we want good command

following.

2.2.2.2 Disturbance Rejection From Eq (23), assuming the command

signal and noise to be zero, we get the following relationship:

-[1+GKJ1ld (30)

<
]

or

y =-Sd 31

The above two equations show that good disturbance rejection requires sensitivity
(S) small, and this requires GK large. That is, g [GK] needs to be large at

frequencics where we have disturbances.
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2.2.2.3 Noise Rejection. From Eq (23), assuming the command signal

and disturbance are zero, we have

[I+GK]!GKn (32)

<
]

or

y=[I-S]n (33)
For good noise rejection we need have [ I + GK ]! GK small, which means that T
should be small at all frequencies where we expect measurement noise. By applying

the matrix inversion lemma and some algebra, we obtain:

o[I+GK J'GK = o [(I+(GK y')!]

1
o (1+(GK)") (34)

Thus by Eq(32), for good noise rejection, we want g [ I + (GK)! ] large or g (GK)!
large. This is the same as & [GK] small, and by Eq (32) or Eq (33) we also can
directly tell that for good noise rejection, we need the singular values of

complementary sensitivity to be small or sensitivity equal to unity.

2.2.2.4 Bode Phase Delay Limitation. Doyle [ 6] shows that the
steepness of the singular value curve near crossover frequency has a large effect on
stability and stability robustness. Steepness greater than - 20 db/decade means the
existence of excess effective poles at the crossover frequency. Therefore, the

singular value curve should cross the zero db line with a slope less than or equal to -

20) db/decade.
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2.2.2.5 Stability Robustness. In a classical SISO problem, tradition
dictates that gain margin (gm) and phase margin (pm) characterize tolerable
uncertainty. These margins are suitable for output multiplicative uncertainty in the

following form:

g(s)+dg(ks) = (1+E)g(s) (35)

where E is an arbitrary real scalar with abs (E) < gm In (10) / 20 for pure gain
uncertainty. Alternatively, E is an arbitrary imaginary scalar with
abs (E) < pm/ 57.3 for pure phase uncertainty. This characterization can be

generalized to the MIMO problem as

G(s)+0G(s) = [I+E(s)]G(s) (36)

Let L(s) be an arbitrary positive function with

6lE(o)] = L(w (37)

L (w) covers simultaneous gain, phase and direction errors which are unknown but
bounded in size. The bound L (®) indicates the maximum normalized magnitude
which the model error can attain; it is typically small at low frequency but invariably
rises toward unity and well above unity as frequency increases. It has been shown in
Ridgely's Technical Report [ 20] that stability is maintained in the presence of all
possible uncertainty characterized by Eq (37), if and only if the complementary

sensitivity ( closed loop ) transfer function satisfies
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1

S[T(w] <
L (o) (38)

This condition leads to " keep T (jw) small wherever L (w) is large". This also can be
interpreted as restricting closed loop bandwidth to the frequency range over which the

plant model is valid.

2.2.3. Desired Loop Shape and Specifications In the previous section we
developed the requirement for good performance and stability robustness, good
command tracking, noise and disturbance rejection, and robustness. Sometimes both

sensitivity (S) and complementary sensitivity (T) need to be small, but since

SG)+T(s) =1 39)

S and T cannot both simultaneously be small . Rather, we must trade off the size of
one function against the size of the other, in accordance with the relative importance of
command tracking , noise, disturbance rejection and model uncertainty at each
frequency.

Normally, the output of the system dynamics can be assumed to be dominated
by unmodeled dynamics and noises at high frequency, while the disturbances and
commands are assumed to lie in relatively low frequency. Command following and
disturbance rejection normally require ¢ (GK) > 20db at frequencies less
than (.1 rad/ sec. Itis also required that all output variables have zero steady state
error to constant reference inputs, thus dictating integral augmentation. This

means the low frequency loop shape must have a minimum of 20 dB at 0.1 rad/sec
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tfrequency, increasing at 20 db/decade backwards in frequency from 0.1 rad/sec. This
low trequency requirement should also cover the low frequency uncertainty.
Uncertainty normally varies with frequency; it is small and approximately constant at
low frequency, then at a certain frequency it starts to grow without bound. For this
thesis, the uncertainty is constant at low frequency. At some point it start to increase
at 20 db/decade, so as to cross the zero dB line at 20 rad/sec. This defines L(w),
which from the small gain theorem the loop shape must be above its reciprocal. From
the above, to satisfy performance and stability robustness requirement when shaping
the loop transfer function , we can put * barriers " on the frcquency plots. A desired
loop shape should have an open loop transfer function singular value curve which
stays outside of this " barricrs ". An example of a desired loop shape, performance
and stability robustness requirement barriers is shown in Figure 4. The " barriers " in

Figurc 4 will be used for turther design and analysis.

100
m 84
n
a -
g sope )
n 7>l It
i 79%%,
4 Yy
t /// %
g i 5977 j//2>> GH 16qplsHhpe
4 "t 9y
c o NN ’//é// ::.:"l
# /7 27y '\TZ %47
d o o N 794
b - sy A M <
AN
G i
%% A
%% /é//,j _
001 01 1 1 10 100
Frequency

Figure 4 Example of Desired Loop Shape and Barriers
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2.2.4 Linear Quadratic Gaussian.
2.2.4.1 Linear Quadratic Regulator. Consider a system as in Eq (1)
and (2). The Linear Quadratic Regulator problem is to find the control signal which

will minimize the deterministic cost function

J = f 1250 Q20 + u O R u@ ] dt
0 (40)

where z = H x is some linear combination of the states which are important to system

control, and Q and R are such that

Q=QT20,R=RT> 0 (41)

Then we can find a controller by letting the control signal u be a linear function of the

state,
u=- Kc X (42)

K¢ is the optimal state feedback gain matrix, which is given by

where P is the solution of algebraic Riccati equation

ATP+PA-PBR!BTP+Q =0 (44)

and P is symmetric, positive semidefinitc. If [A, B] is stabilizable and [A, H] is

detectable, then the closed loop regulator
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x@® = (A-BK,)x@® (45)

is asymptotically stable.
Now we will examine the stability robustness of the LQ Regulator. The

simplified block diagram of the LQ Regulator with full state feedback is:

r=0 u X
— I-A)'B >

K

C

Figure 5 Simplified Block Diagram of Closed Loop LQR

The closed loop traust .« function for a SISO system in Figure 5 is

(joI-A)' B
1+K_ (joI-A)'B

TF, =
(46)
The 1 + K¢ (joI- A)! B term is referred to as the return difference function.
Robustness for a SISO system is typically measured using gain and phase margins.
The gain margin is defined as the amount the gain K¢ can be changed before the closed
loop system becomes unstable. The system becomes unstable when the value of the
return difference is zero. Phase margin is the amount of phase shift that can be
tolerated before the closed loop system becomes unstable.

For a MIMO system, the return difference becomes the matrix
I+ K¢ (GwI- Ay1B. The definition of gain and phase margins for SISO systems
cannot applied to a MIMO system. Ridgely [ 20: chapter 3] gave the definitions of
independent gain and phase margins, which are suitable for measuring the stability of

MIMO system:
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Independent Gain Margins (IGM) are limits within which the gains of all
feedback loops may vary independently at the same time without destabilizing the
system, while the phase angles remain at their nominal values.

Independent Phase Margins (IPM) are limits within which the phase angles of
all loops may vary independently at the same time without destabilizing the system,

while gains remain at their nominal values. [ 20: 3-73]

Ridgely also derived the equations for calculating IGM and IPM:

1l <16M <1
1-a

l+a (47)

22 dn @ in-1(&

2 sin (%‘)<IPM<2sm (‘;) 48)
where o is the minimum singular value of the return difference matrix given by

@ =infg[ I+K Gol-A) 'B] (49)

and o < 1. It should be noted that these equations for the MIMO stability margins
are based on errors that are multiplicative in nature and they are conservative. The
system may be able to accept more gain and phase change than the calculated IGM
and IPM.

Ridgely also derived the Kalman Inequality [ 20: 7-1~ 7-3], which is

H+R K, (jol-A) ' BRI+ R K (jol-A) 'BR] 2 1 50)

where R must be positive definite. When R = p I, where p is any scalar value, the
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Kalman Inequality can be reduced to

[H+K,Gjol-A) Bl I+ K (jol-A) B} > I 51)

The above inequality is true, if and only if
a=0c[l+K.(joI-A)lB] > 1 (52)

In the extreme case a = 1, from Eq (47) and (48), the IGM and IPM for this limiting

cas¢ are

-6db < IGM < o (53)
-60deg < IPM < +6() deg (54)

Safonov and Athans [ 24] proved that any diagonal R matrix will result in the above
guaranteed stability margins, as long as the perturbations in each channel occur
independently of one another. The guaranteed stability margins are good for LQR
designs when using the "design model”, but not good for the real system which has

unmodelled dynamics.

2.2.4.2 Kalman Filter. Given the linear time invariant system

x® = Ax@® +Bu®) +TEQ
y® = Cx@® +n@) (55)

with &(t) and n(t) being zero mean, wide sense stationary, uncorrelated, white

Gaussian noise with intensities
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E[E0E @] = Qd(t-1)
E[nn'@®]=Red(t-1) (56)

where

Qo = QOT 20, Ry = R > 0 (57)

a unique Kalman filter gain matrix exists which minimizes the expected value of

E{eT (t)e (1)), where

e = x(t)-X() (58)

x(t) is defined by

X0 = AX®+Bu® + K[ y©-Cx0] (59)

and

K; = £CTR;! (60)

where X is a symmetric, semidefinite constant matrix, which is the solution of the

algebraic Riccati equation

AT +ZAT+Q-ZCTR{CE =0 61)

Then the Kalman filter closed loop poles are given by the poles of the error dynamics
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e = [A-K¢le® +[F—Kf][§(‘)]

n(w (62)

which are asymptotically stable it and only if [A, C] is detectable and [A, '] is
stabilizable. The Kalman filter also possess the same guaranteed stability margins as

LQ Regulator.

2.2.4.3 Linear Quadratic Gaussian Compensator. The Linear Quadratic

Gaussian (LQG) compensator is simply the combination of the Kalman filter with the
LQ Regulator. Under LQG assumptions, the optimal stochastic controller has the
certainty equivalence property. Under the certainty equivalence property, each
component can be designe‘d independently, with no knowledge of the other. In other
words, the LQ Regulator is designed deterministically, assuming complete and
accurate knowledge of the state, while the Kalman filter is designed based only on the
noises assumed in the system. Cascading the filter with the LQ Regulator yields the
optimal stochastic controller. This combination of the two is guaranteed to be the
optimal solution for the regulation problem when faced with linear combinations of
states and noisy measurements.

We can now derive the state space representation of the complete system.

The input to the plant, u, is given by

u = ’KCX (63)

Substituting Eq (63) into Eq (59) yields
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X® = [A-BK_-K;C]1x+K;y (64)

Taking the Laplace transform of Eq (64)

X6) = [sI-A+BK . +KCl" K;y6) (65)

Finally, substituting Eq (65) back into the Laplace transform of Eq (63) gives the

expression for the LQG compensator

ue) = -K[sI-A+BK+K,C]" Ky6) (66)

2.2.4.4 Loop Transfer Recovery. Ridgely gave a counterexample in his
Technical Report [ 20; 8-1 ~ 8-7], showing that the observer based LQG compensator
will lose guaranteed stability margins of full state regulator. Doyle and Stein [ 7] also
showed same robustness detriment when using an observer to estimate the states.
The better the regulator and observer performance, the worse the stability robustness.
Doyle and Stein developed a method to "tweak"” the filter's components to recover LQ
Regulator robustness [ 6]. This method is named Loop Transfer Recovery (LTR).

In the preceding scctions, we described that the filter's job as estimating the
states of the system optimally, but LTR requires modifications of the parameters
associated with the stochastic nature of the plant. Since the design of the filter and
rcgulator is now based on modified parameters, the goal of producing a controller
meeting the specifications supercedes the preceding goal of producing optimal
estimates and providing optimal control. The filter or regulator is detuned from design

conditions in order to enhance robustness. The variables describing noises become
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tuning parameters. With LTR, uncertainties are reflected by uncertainty bounds,
which were discussed in previous section.
One parameter modification concerns the definition of the estimator Riccati

equation

T
AL+ ATsTT —L3xcTcz =0

W (67)

This modification is the result of using Qf =I and Ry = I in Eq (61), where these
definitions are sufficient to design the Kalman filter with desired loop shapes, followed
by LTR tuning with an LQ Regulator. Now W is a design parameter used to affect the
loop shape of the filter.

We also alter the regulator's Riccati equation

A'P+PA-PBR)B'P+Q, =0 (68)
where

Q. =HTH + q2CTvC (69)
and

RC =p I (70)

Substituting these into the regulator's cost index, Eq (40), we obtain

F= | (X% @E TH+ VO x@© +u®) u® ] dt
0 g (71)
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These definitions include the designer chosen parameters, g, p, I', V, and p.
Previous development relies on these parameters to define the noise in the system
and the weighting applied in the pertormance index. Here these values are chosen to
achicve the goal of meeting the specifications as reflected by the "barriers” in the
frequency domain. The amount of uncertainty in the system is included in the
"barriers”.

First, the designer selects g and I such that the singular value plots meet the
specifications in the lower frequencies. Ridgely [ 20: 9-8 ~ 9-15] shows the low
frequency singular values of the Kalman filter approximate the singular values of the

open loop filter as

6 [Troul

. ~ L
Gi [TKF] m (72)

where

Te, = CIsI-A]'T

T = ClsI-AT'K, “73)
Therefore, W acts as a gain to raise or lower the singular value plot of Ty, The matrix
I" is chosen by the designer to affect the shape of the singular value curves. Different
choices for this matrix can move the singular value curves closer together in different
frequency bands.

Next, the designer uses the values of I and p to solve the modified Riccati

cquation as given in Eq (68); this solution is then used to find the Kalman filter gain

matrix

H (74)
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This procedure is iterated until the singular value curves meet the specifications.

The recovery of the loop shape is accomplished through the design of the LQ
Regulator. The regulator is designed by solving the algebraic Riccati equation given in
Eq (69), (70), with V, p, and H chosen by the designer. V is often set to identity in
order to apply equal weight to each of the outputs. The parameter p is arbitrarily
chosen, but must be positive, since R¢ must be positive definite. In this thesis p =1
is used. Eq (71) illustrates the effects of p and V on the problem. These parameters
determine the weighting applied to control usage relative to the weighting on the
deviations of the states from the nominal. Higher value for p lessen the importance of
control usage in the cost function, but relative weighting is absorbed into the
parameter q2 allowing the arbitrary selection of p. Asymptotically, the controller will
invert the plant as g2—eo, leaving the open loop transfer function identical to the filter

transfer function.

2.3 Static Output Feedback

When control engineers found that sometimes it is not possible to have full
statc feedback to design the controller, they started to develop a procedure based on
using only the measurable variables as feedback. Davison [ 5 ] showed that for the
system given by Eq (1) and (2), if the system is controllable and if rank[C] =, then a

linear feedback control law of the form

u=Fy (75)

can always be found so that r cigenvalues of the closed loop system matrix (A +

BFC) are arbitrarily close ( but not necessary equal) to the r preassigned values.
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Later, Davison found that if the system is controllable and observable and if rank[B] =
m and rank[C] = r, then max(m, r) eigenvalues are assignable almost arbitrarily.

Kimura [ 14 ] showed that if the system is controllable and observable and if
n < (r +m - 1), then an almost arbitrary set of distinct closed loop poles are
assignable by output feedback. However, in practicen 2 (r + m - 1) gzenerally.

When considering the cntire eigenstructure assignment using output feedback,
Shapiro [ 1 ] stated that given the controllable and observable system in Eq (1) and
(2), with the assumptions that the matrices B and C are of full rank, then max (m, r)
closed loop eigenvalues can be assigned and max (m, r) eigenvectors ( or reciprocal
vectors by duality) can be partiaily assigned with min (m, r) entries in each vector
arbitrarily chosen using gain output feedback, i.e., with a control law as Eq (75).
Andry and Shapiro [ 1 ] presented a techniques, by which max (m, r) number of the
system's poles can be shifted, with the remaining poles drifting to unassigned
positions. Furthermore, this method allows almost arbitrary assignment of portions of
the system eigenvectors. By Andry's method, the output feedback problem is to find a
constant gain matrix Kg, with dimension m X r, which performs the reassignment of
the poles through inner loop feedback. In other words, the plant's inputs become a
combination of external input and gain-modified outputs. The state equation for the

new system with Kg in place becomes

>
I

Ax+Blu+Ky] (76)

y = Cx
Through output feedback, Eq (76) becomes

x =[A+BK;C]x+Bu
y=Cx (77)
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2.3.1 Eigenvector assignability. In Andry's paper, procedures for finding the
output feedback gain matrix Kg are stated. The procedures we will use are stated

here. By the definition of the eigenvalue, eigenvector pair (Aj and vj)

[A+BKsClvi = Ajvi (78)

or

vi = [MI-A]TBKgCyvj (79)

where the eigenvalues are assumed distinct, allowing the matrix inverse operation.

Eq (79) shows that vi must lie in the subspace spanned by the columns of
[AI-A ]‘1 B. which is of dimension rank(B). Hence, the eigenvectors must lie in a
space with dimension equal to rank(B).

Since the desired cigenvector will probably not lie precisely in the subspace
mentioned above, a best possible choice ( in the least square scnse ) is made. That
is. an achievable eigenvector ( vi?) is the result of a projection of the desired vector (
vid) onto the subspace spanncd by the columns of [Aj I - A] B. vid is chosen so that
designer can accomplish the specitic response shape, such as coupling or decoupling
modcs of the system. The unassigned clement can be left in the original form.

This projection of the desired eigenvector on the achievable subspace is

calculated by first defining
Li = [MI-A]B (80)

Since the allowable eigenvector must lic in the space spanned by the columns of Li,

vid = Lizi (81)
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where z; is an m dimensional vector. When using a projection method to minimize the

least square error, z; is calculated as

T d
[L L, ] (82)
Substituting into Eq (81) yields
T, d
=L, [L L1 L (83)

2.3.2 Partial assignment of desired eigenvector. In many practical situations,
complete assignment of eigenvectors is not required, but rather the designer is
interested only in certain elements of the eigenvector. For this situation, assume the

desired eigenvector vid has following structure

where v;; are designer specified elements and x is unspecified elements. We define

the rcordering operator as {-}Ri and reorder v{d as

d,Ri 1,
(vi1" = M

where | is a vector of specified elements of v;d and d; is a vector of unspecified




clements. The rows of the matrix (Ai - A )-1 B need to be reordered to conform with

the reordered elements of v;d as

-1 Ri L,
(Q,1-A) B} =M

i
Then we can proceed in precisely the same manner as in Eq (82), (83), with 1 ;

replacing vid and L'; replacing L; to obtain the projection of achievable eigenvector.

2.3.3 Static Output Feedback Gain (Kg) Calculation. After we get the desired

eigenvectors (or their projection lies in the achievable subspace), we can start to

calculate the gain matrix K. We begin by transforming the system such that the B

matrix becomes

ol
B =|--
[0] (84)

this transformation is accomplished by finding a matrix T, such that
x =Tx' (85)
The T matrix can be defined as

T = [[B] [P]] (86)
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where P is any matrix such that T is invertible. Now , using this matrix as a similarity

transformation
A =T!AT
B =T!B
C=CT (87)

A desired cigenvector or its projection on the achievable subspace is also transformed

as

vid' = T-1 y;d (88)

Subsequent development is performed under the assumption that the system

has been transformed according to Eq (87) and (88).

Recalling the equation for the closed loop eigenvalues and eigenvectors
[AMI-A]vi = BKgCyvj (89)

rewrite Eq (89) in partitioned form

[MI-A,] [-A) [[zi]] _ [Im]] K C[lldl

FAul [Ailyq-Alf (V] L] (wi ©0)
Taking the top partition of Eq (90) and rearranging yiclds
Mzi-lTAnzi+Apwil = KsCvj 9n
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Defining Ay =[ A1 Aj2 ], Eq (91) can be written as

[A1+KsC]V =727 92)
where

V ={vi v2...v[]

Z=[AM2z1 AMyzy ... Arzr ] (93)
In general, the V and Z matrices are complex. To alleviate the need for complex
arithmetic we use the transformation presented by Moore [ 18 ], to transform V and Z

to real matrices. Finally, Kg can be calculated from Eq (92)
Ks = [Z- A; V] [C V]! (94)

The procedure of using Static Output Feedback method to assign eigenstructure is

implemented in a MATLAB M-File which is described in Appendix B.

2.4 Robust Eigenstructure Assignment

2.4.1 Eigenstructure Assignment. Consider a linear, time invariant system
described by Eq (1) and (2), with rank(B) = m, rank(C) = r, and the system is
controllable and observable. Andry showed in his paper [ 1 ] that the state trajectory

is described by

x® = Y, M xgexp (A1) v;
i=1 (95)
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where Aj is an eigenvalue, vj is a corresponding eigenvector, M is the modal matrix
which is a matrix composed of individual eigenvectors of the system and x¢ is the
initial state. Every solution of Eq (95) represent a free response of the system, and it
depends on three quantities:

(1) Eigenvalue, which determines the decay or growth rate of the response.

(2) Eigenvector, which determines the shape of the response.

(3) Initial condition, which dctermines the degree to which each mode will
participate in the free

response.

If we need to use feedback to alter the time characteristics and shape of the
system transient response, both eigenvalue and eigenvector (i.e., the eigenstructure)
must be reassigned.

The eigenstructure assignment problem for full state feedback can be stated as:
given a self-conjugate set of scalar [ Ad],i=12,....nanda corresponding self-
conjugate set of n dimension vectors [ vid ],i=1,2, ...., n, find a real (m X n) matrix K
such that r of the eigenvalues of [A + BK] are precisely those of the self-conjugate
set [ Aid ] with corresponding eigenvectors the self-conjugate set [ vid .

Moore [ 18 | identified the freedom offered by state feedback to assign the
cigenvalues and eigenvectors, when the eigenvalues are distinct. Moore also gave
the procedure to find the gain matrix K, which yields prescribed eigenvalues and
eigenvectors. We define

Sy = |(M-A] (B] °6)

and a compatibly partitioned matrix




R =)
A. —_
M 97)

where the columns of Ry form a basis for the null space of S;. For rank(B) = m, one
can show that the columns of Nj are linearly independent. With this background

Moore { 18 ] has the following theorem:

Let [ Aj ], i = 1,2,...,n, be a self-conjugate set of distinct complex numbers.
There exists a real (m x n) matrix K such that [A + BK]v; = Ajvj i=12,...n. if

and only if for each i:

(1)[vi] i=12,...,n, are a linearly independent set in C*, the space of complex n-
vector.

(2) vi = viT when 4; = AT

(3) vi € span [ Nyj ].

The eigenstructure assignment design technique to specify the eigenvalues and

associated eigenvectors is to let

wi = Kvj (98)
so that

[AjI-A]vi+BKvi=0 (99)
can be written as

[AiI-A]vi =Bwj (100)

As already shown, all of the eigenvalues can be placed exactly, so as long as the
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desired eigenvectors lie within the achievable subspace. The only unknowns in Eq
(100) are the elements of each wi. Eq (100) can be solved for the elemert. ... the wi.
Once the clements of each wj have been calculated, the gain matrix K can be
determined by combining the set of n equations from Eq (98) into a singlc matrix

cquation. Definc the matrices W and V as

[ Wi, w2, ..., wp | (101

<
H

[ VI, V2, ..., vn ] (102)

The matrix V containing the right eigenvectors is often referred to as the modal matrix.

Combining equations obtained from Eq (98) yields

W =KV (103)
Since the eigenvectors are linearly independent, the V matrix is nonsingular and Eq
(103) becomes

K =wyVl (104)

In practice, the desired eigenvectors are often not achievable, not lying within
the subspace spanned by [ Aj I- A ]-! B. This means that a solution for K that will
yield a closed loop system that has the desired eigenvectors is not possi'le. One
method to get around this problem is to project the desired eigenvectors onto the
achievable subspace, minimizing the difference between the desired and achievable
vectors. Liebst and others [ 16 ] achieve this by introducing a quadratic cost function

to be minimized subject to Eq (100) as

J o= [vi2-vid JTPi [ vi2 - vid )] (105)
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where Pj is a diagonal weighting matrix for the ith eigenvector. Then we can solve for
W and K matrices that come close to providing the desired eigenstructure. The
eigenstructure assignment method then provides a means to specifically place

eigenvalues and optimally place eigenvectors for a control system.

2.4.2 Eigenstructure Assignment with LOR Robustness. From the theory
discussed in section 2.2.4.1, we showed LQR possesses guaranteed stability

margins. By using full state feedback with the control law:

u=-Kx (106)

The closed loop system is:

X = (A-BK)x (107)
The gain matrix is

K = RI1BTP (108)
SO

x = (A-BRIBTP)x (109)

The achievable closed loop eigenvalues can be found by

det[Ai-(A-BRI!BTP)]= 0 (110)

The achievable right eigenvectors can be found by solving the nullspace of

[MI-(A-BRIBTP)]vi =0 (111)
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Robinson [ 22 ] and Huckabene [ 11 Jused an algorithm to assign the
eigenstructure by minimizing combined distance between the elements of desired and
LQR achievable eigenstructure. They introduced a quadratic performance index 1,

where

T= [ (Aai - A 2 + (Vai - Bivai )T Byj (i - B3vgs )]
i=1 (112)

where
f;; = weighting on the ith eigenvalue
Ag; = ith desired eigenvalue
Aqi = ith achievable eigenvalue
vgi = ith desired eigenvector
v,i = ith achievable eigenvector
F,i = diagonal weighting matrix for the ith eigenvector

0; = real or complex constant that minimizes (vg; - 0; vai )

Minimizing J will minimize the combined distance between the elements of the desired
and LQR achievable eigenstructure. The weightings f3; and F; allow the designer to
specify the relative importance of achieving individual elements of the eigenstructure.
Assuming a weighting of zero for any desired element will leave the algorithm free to
place that element to any necessary value. The algorithm searches for the minimum
cost J sithin the constraint of closed loop LQR described by Eq (110), (111).
Feedback gains are a function of P; where P is the solution of the algebraic Riccati
equation, which is a function of R and Q. Q need to be symmetric and positive

semidefinite and we define Q = HT H, where H is any n x n symmetric matrix. For
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ensuring R is symmetric and positive definite, we define a symmetric matrix M such
that R = MT M. During the iteration, the algorithm will vary the elements of M and H
to find the closest eigenstructure to the desired eigenstructure. Because M and H are
symmetric, the number of elements need to be varied is limited to the upper triangular
portion of each matrix. If R is restricted to p I or a diagonal matrix, the number of
elements is reduced turther. After tinding the achievable eigenstructure closcst to

desired, the algorithm will return the finalized Q and R matrices.




Il A - 4 Aircraft System Design and Results Analysis

3.1 Design Model Description

Since aircraft flight control system design using the LQG/LTR technique is
emphasized in this thesis, two very different aircraft are studied. The first one is an A-
4 aircraft with conventional stable static stability and control surfaces, i.e., horizontal
tails for longitudinal control, ailerons and rudder for lateral and directional control.
Two models of the A-4 aircraft are used. Longitudinal control of the pitch angle
response is used as a SISO design model; design with this SISO model allows
starting with a simpler problem. Lateral-directional control of the bank and sideslip
angle responses is used as a MIMO model, so MIMO design can be evaluated. As
addressed in the previous section, the LQG/LTR methodology has drawbacks when
the design plant has right-half-plane (nonminimum phase) zeros, lightly damped poles
or moderate frequency unstable poles. An  A-4 aircraft flying at 15,000 feet, 0.6 Mach
gives the typical low damping phugoid mode longitudinally in the SISO model and
Dutch roll mode laterally in the MIMO model, so these A-4 models present the lightly
damped poles problem of the I.QG/LTR method. The detailed model characteristics

will be described in following section of design process.

3.2 LQG/LTR Methodology Overview

For an aircraft, the plant input is control commands and plant output is aircraft
responses. When designing control systems for aircraft, we are interested in having
the responses track the commands, so we prefer to design the LQG/LTR
compensator by breaking the loop at the plant output. By following the two step
LQG/LTR compensator design procedure in Ridgely's Technical Report [ 20 ], we will

design the loop transfer function shape or the target feedback loop (TFL) shape by
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designing the Kalman filter first, then by tuning the LQ regulator state weighting

matrix to recover target feedback loop shape. The steps are :
Step 1: Full state Kalman filter design.

Given the state space model as Eq (1) and (2), we treat I" and |t as

completely tunable parameters rucher than fixed noise intensities. The loop transfer

function of the filter is given by

Tkr = COK;
where
d=[sI-A]!

Using the Kalman equality corresponding to the filter, we have the relation

0+ T 1+ Tyl =1+ L [COT] [COT]
m

therefore

2
0'1[1+TKF]=V1+—1°} [COIT] =2 1
1]
and at low frequency, where 6;[Tkg]>> 1, this can be simplified to

o, [Tkd = 1 c,[CdI

Vu

(113)

(114)

(115)

(116)

(117)

Again, many choices of I" and u may be made without solving Riccati equations in

order to meet the performance specifications. The same guaranteed margins hold for

the Kalman filter as for the LQ Regulator, so that crossover properties are very good.

Finally, as u - 0
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where W is any orthonormal matrix. This implies

o, =G[C I/Vn

(119)
where ® ¢ max 18 the maximum crossover frequency.

We wish to design an LQG/LTR feedback system which has the property that
it has zero state error to arbitrary constant (step) commands and disturbances. This
specification implies that we must have an integrator in each channel of the open loop
system. Also, we would like to have all loop singular values close together at both
low and high frequencies; this requirement often leads to designs in which all
crossover frequencies are approximately the same, so that the MIMO system has
about the same speed of response in all directions.

Since we are using the LTR method, all the desirable attributes of the design
must be reflected in Tkg (or TFL). To meet the zero steady state error specifications,
we must first correctly define the design plant model, so that it contains the
necessary integrators. This can be accomplished by adding one integrator in each

control channel of our plant. Mathematically, we define the vector u(t) by

u, () = u() (120)

or

uy(s) = (1/s) u(s) (121)

where u, is the nominal control vector. The design plant model is then defined by the

augmented dynamics and it is now an (n+m) dimensional system. In the state space
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model, the A, B and C matrices are now

a=(3r B 5-[0). c-rcon

(122)
where A,, By, C, are the original system matrices.
Now we shall choose the design matrix I" to cause the TFL singular values to

be identical at both low and high frequencies. First decompose I' as follows

rﬂ
=
Ll (123)

We shall use the n x m matrix ['L to influence the low frequency behavior of the
singular values, and the m x m matrix I to influence the high frequency behavior of

the singular values. Ridgely showed that 'L and I'h can be chosen as

dg -1
rL=-[CoA0 B,] (124)
T T,-1
rh=Co [CoCo ] (125)
so that
lim

. (C D(jw) D) = (Vo
oo 0 € ¥ (1/w) (126)

Now, the singular value curves have the same integral action and are close to each
other.
Step 2 : Full state loop transfer recovery using the regulator

Design the LQ Regulator with weighting matrices

Q. =HTH +q«CTVC (127)

Re=pl (128)
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where q is a scalar taking on increasingly larger values and V is an arbitrary,

2
symmetric positive definite matrix. As4 — oo

K.

q ->WC (129)
and

G (S)K(S)—C®B[(CB) I[CHK J = COK, (130)

which is the Kalman filter loop Tkg we just designed. Notice this recovery inverts the

plant.

3.3 SISO System Design and Results Analysis
3.3.1 Plant. The SISO system state space A, B matrices are shown in

Appendix A. The states, control and output are

airspeed (v) - ft/sec
AOA (o) - deg
pitch rate (q) - deg/sec
pitch angle (0) - deg
clevator
deflection (8,) — deg

u = [elevator command (8, )], y = [pitch angle]

The open loop plant eigenvalues, eigenvectors and zeros are given in Table 1. The
plant is stable, minimum phase, the short period mode is not well damped ( {ph = 0.3),
and the phugoid mode has very low frequency ( 0.0891 rad/sec) and . ow damping ( {pn
=().0631). The low damping poles will be shifted by using the static output feedback
and robust eigenstructure assignment methods, so that the LQG/LTR closed loop

system won't have dominant slow poles.
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Table 1 SISO Open Loop Plant Eigenvalues, Eigenvectors and Zeros

mode short period phugoid actuator
eigenvalue | -1.19+3.51  |-.0056+.0628i 220
.036+.023i -.992+.053i -.0011

.232+.126i 0024£.0001i .0338
eigenvector 374i.8511 '.007i.00061 .71 12

.189+.1671 0187+.111 -.0356
0 0 7013
ZEeros -.7306, -.0121

3.3.2 Nominai Plant LQG/LTR Compensator Design . By following the two
step procedure stated above, we design the target feedback loop shape first. For
satisfying the zero steady state error performance requirement ( which is normal for
an fighter type aircraft like A-4), a single integrator is augmented into the plant. Since
this is a SISO case, the system just has one singular value curve (Bode magnitude
plot). Choosing the I" matrix, it is not necessary to consider the maximum and
minimum singular value curves matching problem, so while choosing I' and p an

approximation of

CoK;= -Lg[Cdl)
n (131)

to meet the performance and robust:.css specification is the primary consideration in
shaping the target loop. As long as the target loop shape stays outside the " barricrs
", I can be arbitrarily chosen. The parameter y is chosen to satisfy the system

bandwidth requirecment. For this SISO design, the low and high frequency singular
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value curves matching equations are still used to calculate T, so that integral action
can be assured. = .01 is chosen to have the crossover frequency around 9 rad/sec.
In tuning the Regulator to recover the Kalman filter process, Q. is chosen as
Q.=H'H=C'C (132)

because the measured variable is also the variable we want to control. p is chosen to
be unity. =300 is selected to give a reasonable trade off between optimality and
robustness recovery.

The Target Feedback Loop (TFL) and LTR singular value curves are shown in
Figure 6. The LTR curve has -20 db/decade more roll-off than the TFL curve, as
expected. Both curves meet performance and robustness specifications. The large

hump is caused by low phugoid damping.
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Figure 6 SISO Nominal Plant TFL and LTR Singular Value Curves
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Table 2 shows the poles and zeros of the LQG/LTR compensator and closed
loop system. It shows the compensator approximately inverts the plant, putting two
zeros on real axis close to the phugoid complex poles, causing the closed loop system
phugoid mode to disappear. The compensator has two poles which go to the plant
transmission zeros as expected. Because part of compensator and closed loop plant
dynamics are high frequency, they won't dominate the system response. In the

following analysis, high frequency poles will not be listed.

Table 2 Nominal SISO LQG/LTR Compensator and Closed Loop Poles and Zeros

poles Zeros

-25.4719.851 -20
Compensator -674i199 l '138:‘:393 1
-.7603 -.227
-.01209 -.0121

-.88+4.111
closed 22378

loop -.7603
System -0121

When angle of attack is chosen as the output, the system becomes angle of
attack to elevator response. The transmission zeros become one at high frequency
and two complex zeros close to the phugoid poles. With this configuration, the
LQG/LTR compensator will closely invert the plant. Thus when plant has
transmission zero on the real axis and close to system pole, the compensator may not

invert the plant closely.
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The closed loop system response to a pitch angle step input is shown in figure
7. The oscillatory response due to the nominal short period mode is not well damped.
The response shows good tracking performance. The phugoid mode cannot be

observed.

e veoram

Time (secs)

Figure 7 SISO Nominal Plant Closed Loop Pitch Angle Step Response

3.3.3 Static Output Feedback In classical aircraft SISO system feedback
design, using single output feedback inner loop with proportional and integral gains,
the closed loop poles can be assigned to all positions along the root locus. But a
system has its inherent limitations on closed loop pole assignment; moving some
poles to better location can result in moving the remaining poles to a degraded
location. For instance, feedback pitch angle or airspeed can move phugoid poles to a
higher damping location, but will sacrifice short period damping; feedback pitch rate or
AOA rate can move short period poles to wncreased damping location, but will not
affect phugoid too much. Thus, SISO feedback design technique has a major limitation

— polc assignment is limited to the system root locus, and arbitrary closed loop pole
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assignment is not possible. For MIMO systems, the root locus technique is not a
practical tool for feedback design. Hence static output feedback will be used to

reassign system poles.

3.3.3.1 Output Selection. In the feedback gain matrix equation

F=(Z-AV)CV)! (133)
for assigning complex pair poles like phugoid or short period, the V matrix has two
columns. In order to have CV invertible, we need to have two outputs. Since
improving the plant's phugoid mode is a main concemn of this design, airspeed and pitch
angle feedback makes the phugoid poles more assignable. Other combinations do not
give more assignability on phugoid poles. Output feedback can exactly assign plant
poles, but the unassigned poles will drift randomly. Selecting some combination of
two other variables as feedbacks, like pitch rate and pitch angle, the unassigned poles
will drift to unstable. Basically, the output feedback affects the pole assignability
following the classical feedback rules and depends on how the feedback variable
changes the closed loop dynamics equation. One way to select the output is to look
at the corresponding normalized eigenvector of the desired eigenvalue; if any element
of the eigenvector has relatively larger magnitude, it is more effective to changing that
mode when feeding it back. For example, the airspeed and pitch angle elements of the
phugoid eigenvector are large compared to other elements, therefore, are good

candidates for feedback.
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3.3.3.2 Pole Assignment . We will use airspeed and pitch angle output
to increased phugoid damping, keep constant phugoid frequency, and leave the other
three poles unassigned. While the phugoid assigned is to a better damping location ,
the short period damping also increases. If the phugoid frequency is increased with
phugoid damping higher than 0.3, the short period poles will come to the origin.
Generally, improving one mode will sacrifice the other. Since we cannot improve both
phugoid and short period modes, and choosing phugoid poles faster than normal
(slower than .01 rad/sec) will cause the phugoid to affect pitch response, it was
decided to improve phugoid damping and not change the phugoid frequency. When
assigning phugoid poles to -.0534 £ .0468 i, the closed loop poles and static gain F

arc:

closed loop poles : -.0534 +.0468i, -1.022 +3.7491, -20.1
static gain  F : -.0006, .0925

The phugoid poles can be assigned cxactly to the desired location, but to keep the

unassigned poles stable, the assignable region of the phugoid is limited.

3.3.3.3 LQG/LTR Compensator Design. We now augment the SOF
inner closed loop plant with a single integrator to control steady state error, then
design a target feedback loop and recover the loop transfer function. We obtain the
LQG/LTR compensator which stabilizes the SOF inner loop plant. The combined

compensator, integrator and SOF plant block diagram is given in Figure 8.
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3.3.3.2 Pole Assignment . We will use airspeed and pitch angle output
to increased phugoid damping, keep constant phugoid frequency, and leave the other
three poles unassigned. While the phugoid assigned is to a better damping location ,
the short period damping also increases. If the phugoid frequency is increased with
phugoid damping higher than 0.3, the short period poles will come to the origin.
Gencrally, improving one mode will sacrifice the other. Since we cannot improve both
phugoid and short period modes, and choosing phugoid poles faster than normal
(slower than .01 rad/sec) will cause the phugoid to affect pitch response, it was
decided to improve phugoid damping and not change the phugoid frequency. When
assigning phugoid poles to -.0534 = 0468 i, the closed loop poles and static

gain F are:

closed loop poles : -.0534 £.04681, -1.022 +3.749i, -20.1
static gain  F : -.0006, .0925

The phugoid poles can be assigned exactly to the desired location, but to keep the

unassigned poles stable, the assignable region of the phugoid is limited.

3.3.3.3 LQG/LTR Compensator Design. We now augment the SOF
inner closed loop plant with a single integrator to control steady state error, then
design a target feedback loop and recover the loop transfer function. We obtain the
LQG/LTR compensator which stabilizes the SOF inner loop plant. The combined

compensator, integrator and SOF plant block diagram is given in Figure 8.
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Figure 8 LQG/LTR Compensator and Plant Block Diagram

The system in Figure 8 includes d, which are the disturbances injected at the output of
the plant, n; which is noise in the inner static output feedback loop, and n, which is
the noise in the outer feedback loop measuremnets. This block diagram will be used
for all the model design analysis.

While tuning the LQ Regulator for recover the loop transfer function, thc same
q and u as the nominal design are chosen, so that we can compare the system
performance and stability robustness on the same baseline. The target feedback loop
and LTR singular value curves are shown in Figure 9. The loop shape is very close to
the nominal plant designed shape, excesi the low damping phugoid peak does 1.’

exist. System bandwidth is about the same as the nominal design.
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Figure 9 SISO SOF Plant TFL and LTR Singular Value Curves
The compensator and closed loop system poles and zeros are showed in Table
3. Notice that the compensator also does not closely invert the plant. The phugoid
mode became well damped, and short period damping is reduced compared with the

nominal design.

Table 3 SISO SOF Plant Compensator and Closed Loop System Poles and Zeros

poles Zeros
25.549.86i 20,1
-6.72+18.96i _ )
compensator _.67306]8961 _lz-ggi4.l61
-012 -.0121
loop -7603
System -0121
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3.3.4 Robust Eigenstructure Assignment. We use the duality of the Kalman
filter with the LQ Regulator for Huckabone's { 11 : 78 - 103 ] Fortran program. The

inputs and outputs of the program are

[ Q R, P, As Vi, 6, T 1=LQREA (A, B, Ay, F., Vg4, F,, t0l, Rcode)

The user must provide the following inputs by defining them in MATLAB
- A and B matrices
- A4, diagonal matrix containing the desired eigenvalues
- Fe, diagonal matrix containing the weightings for each eigenvalue
- V4, the desired modal matrix
- Fyv, a matrix containing the eigenvector weightings, columns of F,
corresponding to columns of V(¢
- tol, convergence tolerance

- Recode, code specify type of R matrix used. Rcode =1 is a diagonal matrix

Available outputs from the program are
- Q, LQR state weighting matrix
- R, LQR control weighting matrix
- P, unique positive semidefinite solution to the algebraic Riccati equation
- A4, diagonal matrix containing the achievable closed loop eigenvalues
- 8, diagonal matrix containing the eigenvector difference minimization
parameter
- J, the final value of the performance index
Input the plant with integrator augmented and transpose the A,C matrices. When we

input the transposed A matrix (AT), the eigenvalues of AT matrix are the same as A
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matrix, but eigenvectors are different, the eigenvector of AT becomes the left
eigenvector. It can be derived that the left eigenvectors modal matrix (W) and right
eigenvectors (V) modal matrix have the relationship of W = [ V-NT, that is the rows
of the inverse right eigenvector matrix are the columns of the left eigenvector matrix.
We then can use above relationship to assign the desired eigenstructure of the closed
loop Kalman filter.

For this SISO design, we assign

[_4.0+1.51)
2.542.7i
-20
J | —0121 |

,  Ay=diag

Pt et et ok gk b

The desired eigenvalues are assigned to delete the phugoid mode by moving it to
higher tfrequency and damping. Short period eigenvalues are assigned to have better
damping and frequency also. The actuator pole is assigned to its original location, so
that actuator performance can be maintained. The desired eigenvalues are equally
weighted. Because we are not designing a flight control system to give
unconventional flying qualities, reshaping the eigenvector to have decoupled response
is not the design goal. To shorten the calculating time, eigenvectors are not assigned
and the eigenvector weighting matrix is chosen as zeros. Tolerance is selected to be
one and a diagonal control matrix is selected. The returned achievable eigenvalucs

arc.

[_3.504+1.347 i
2.41342.255 i
22023
0121

A, = diag




The cost function index is J = .8382; it has acceptablc approximation to the desired
eigenvalues. Increased damping and higher frequency eigenvalues assignment was

tried with ' sired eigenvalues like

[_4.043.01)
_3.243.4i
20
0121

A, = diag

The REA program returned achievable eigenvalues were:

-

[ _3.842.47i
- + :
A= ding] 0322781
~19.99
0171

b -y

The achievable eigenvalues are not close to desired eigenvalues and the cost function
index is ] = 1.45. Assigning less damping and slower frequency, the achievable
eigenvalues are much closer to desired, and the cost function can be reduce to J =
0.000054. Thus, there is a certain region close to original eigenvalues where the
Kalman filter can achieve the desired.

Table 4 lists the eigenvalues of the closed loop Kalman filter of original open
loop plant, static output feedback closed inner loop plant and robust eigenstructure
assignment. We know that the closed loop Kalman filter poles will be part of the
system closed loop poles. Table 4 shows robust eigenstructure assignment has
better assignability than static output feedback method in this SISO problem. The
computing time for running the LQREA program is on average 3 minutes; the short
computing time is due to low order of this SISO system , and unassigned

eigenvectors.
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Table 4 SISO Nominal, SOF, REA Designs Closed loop Kalman Filter Poles

design nominal SOF REA
-19.89 -19.98 -20.23 _
Kal -10.86 2107 2414225
ﬁlater:lan -.883+4.11 -8+4.36 1 -36?3_1'*:1.34 i
closed loop -.2378 -3 -
poles -0121 -0121

3.3.4.1 LQG/LTR Compensator Design . The LQREA returned a
Kalman filter state weighting matrix Qf which is symmetric, positive semidefinite, and
cont.ol weighting matrix R¢, which is a diagonal matrix and positive definite. AT CT,

Qs and Ryare used to solve the algebraic equation

AP + PAT - PCTR{'CP + HTQH = 0 (134)

then
T -1 lep T
K;=R; CP or K;=(R;CP) (135)

The CDKs singular value curve is shown in Figure 10. The loop shape satisfies the
spe ifications. By using this robust eigenstructure assignment algorithm, and using
the 1eturned state and control weighting matrices to calculate Kalman filter gain

matrix, we cannot fine tuning the C®K¢ loop shape , except changing the p value in

szu.l (1?6)
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so the crossover frequency can be changed. By choosing q =300, the LTR singular
value curve is also shown in Figure 10; the recovered loop shape met the
specifications. ‘ihe LQG/LTR compensator and closed loop system poles and zeros

are in Table 5. The closed loop short period and phugoid modes are much improved.
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Figure 10 REA design C®Krand LTR singular value curves

Table 5 SISO REA design compensator and closed loop poles and zeros

poles zeros
-25.59+10.16i 119.98
- b4 - + .
compensator _67";'(5)"'5'19-421 ) } :%3_2.971
012 -0121
-3.59+1.34i
flosed -2.41%2.26i
o -.7603
system - o121
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3.3.5 Results Comparison. By comparing the closed loop poles of the nominal
plant design, SOF and REA method designs in Tables 2, 3 and 5, we see that using
the SOF method, the phugoid poles cannot be assigned arbitrarily, resulting in the
closed loop poles differing somewhat from nominal. With the REA method the
phugoid poles can be moved to a further left location, resulting in a closed loop system
with good short period damping. The pitch angle step input responses are given in
Figure 11. The REA method has improved the short period damping and tracking
performance is good for all methods.

The complementary sensitivity T singular value indicates system robustness,
as stated in the " small gain theory”: for a robust system

— - -1
o[T]=c[GK(I+GK) ] < _ U

clL)] (138)

The lower the maximum singular value of the complementary sensitivity and crossover
frequency, the more robust the closed loop system. All three complementary
sensitivity singular value curves are shown in Figure 12. The REA curve has higher
crossover frequency, since we didn't change returned the Ry matrix. If we adjust Ry to
have same crossover frequency as the nominal and SOF designs, then o[T] of the
REA design will have a lower value at high frequency, and will be more robust. The
lower the ofT] at high frequency the better the high frequency noise rejection
capabilitv. Figure 13 shows the responses of step pitch angle input with noise
injected into the feedback path. The SOF design response has noise injected both at

inner and outer tecdback path.
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In the inner loop the static gain vector is [ -.0006, .0925 ], so inner loop noise will be
attenuated. Time responses show no difference between nominal and SOF designs.
The REA design should have better noise rejection capability, if we adjust the
crossover frequency to lower ¢ [T].

The sensitivity curves of all the closed loop system are shown in Figure 14.
All curves show mismatch of low frequency poles and zeros. The SOF method has
slightly lower sensitivity than nominal at low frequency. The REA method gave
lowest sensitivity at low frequency, and this should be reflected in the disturbance
rejecting capability. The A-4 gust transfer function is used in the simulation model,
and the closed loop system is excited with white Gaussian noise, cascaded with a
0.1/ (s+1) lag filter to clear the high frequency signal. The pitch angle step input with
disturbance responses of all the designs are shown in Figure 15.

The best way to analyze stability margins of a SISO system is by looking at
the Nyquist plot of the open loop system. Two points on the plot give gain and phase
margins. The closest point of the open loop transfer function gk to the (-1, ()) point
on the plot gives the gain margin. The point where gk intersects with a unit circle
centered at origin indicates the phase margin. Nyquist plots of all three designs are
shown in Figure 16. The SOF method doesn't improve the stability margin, and the
REA method has slightly better phase margins, but reducing gain margin. Because
we didn't choose a high q value for completely recovering stability robustness, the
gain and phase margins shown here are not as good as the guaranteed gain and

phase margins of a full state Kalman filter.
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Figure 15 SISO Disturbance Response of Nominal, SOF, REA Designs

(x coordinate is SIMULINK time unit, 100 = lsec)
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Figure 16 SISO Nyquist plot of nominal, SOF, REA designs

69




2.3.6 Robustness with Perturbed Plant. For an aircraft like the A-4, which is
a subsonic fighter aircraft, the altitude / airspeed operational envelope is still
considerably broad. Different flight conditions irom the nominal, like different Mach,
altitude or angle of attack cause the plant characteristics to differ from the nominal
plant. Other factors like measurement error, structure flexibility, etc., can perturb the
nominal plant. Flight control design is based on a certain nominal design model; when
the plant is perturbed, the controller designed for the nominal plant may not be
effective in stabilizing the perturbed plant. Suppose the actual and nominal plant has

following relationship

G,=(1+¢)G, (139)
where Gy and Gy are the actual and nominal plant , respectively. The actual plant

poles may also be aftected. thus suppose the following relationship on pole location

holds:

(Re+Im), = (1+¢&)(Re+Im), (140)

where Re and Im are the real and imaginary parts of the plant pole. If, given the worst
casc, only the real part varies by decreasing the real value, i.e, € is negative, the
damping will decrease from nominal system. Suppose there is a - 5% perturbation of
the phugoid mode from nominal condition, ( € = -.05 ). Using the same static gain
from the SOF method and the same LQG/LTR compensators from all the designs, the
periurhe d system is tormed.  The closed loop poles are showed in Table 6. All the
closed loop system are still stable and in the SOF design the system damping even
improved. Figure 17 and Figure 18 show the sensitivity and complementary

sensitivity of perturbed closed loop system. The SOF sensitivity is increased, but
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should be good for tracking and disturbance rejection. The complementary

sensitivities have no apparent change.

Table 6 Perturbed Closed Loop Poles of Nominal, SOF, REA Designs

design nominal SOF REA
-.0053 -.0053 -0118
-0121 -.0121 -.012
closed loop | _2366 -.2991 -.7601
pole -7679 -7679 -2.41£2.256 1
-883+4.111 -.805+4.361 | -3.598%1.341
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3.4 MIMO System Design and Results Analysis
3.4.1 Plant. The state space form of the MIMO plant with actuators is given

in Appendix A. The states, controls and outputs are:

—sidmlip angle @) - deg—
roll rate (p) - deg/sec
bank angle (¢) - deg aileron command (9,.)
| yaw rae () - deg/scc _ - deg _ [sideslip angle]
aileron deflection 3,) | rudder aommand @,c)| bank angle
- deg - deg
rudder deflection (3;)
L -deg
Table 7 MIMO open loop plant eigenvalues, eigenvectors and zero
mode dutch roll roll spiral actuator | actuator
eigenvalue | -.386+4.322i -1.53 -.0058 -20 -20
-.087+£.066 i -.0003 0015 -.0009 .028
-.239+.8191 .8368 -.0058 -9976 -.7838
cigenvector [ - 183+072i | -.5467 | .9988 0499 | .0392
.262+.39 i -.0278 .0496 -0185 .6146
0 0 0 .0433 0
0 0 0 0 0749
7¢ro -207.3

The open loop cigenvalues, eigenvectors and zeros are given in Table 7. The plant

has a lightly damped Dutch roll mode ( {pr = .0891 ), which must be moved to a
better damped location to avoid poor LQG/LTR plant inversion results. To eliminate

steady state step response error, integrators are augmented in the two control
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channels. The two inputs and outputs have the same units, and have about the same
magnitude, so scaling is not necessary for this MIMO model.

3.4.2 MIMO Loop Shaping Technique. In a MIMO system, the number of
singular value curves is determined by min[ m, r |, where m and r are the dimension of
control and output, respectively. For this two input two output problem, we will have
two curves, the maximum ( 6 ) and minimum ( g ) singular value curves. Widely
separated G and g curves means a change in input direction will result in different
shape and magnitude of the output, thus the system characteristics will be hard to
predict. One of the steps in shaping the target feedback loop (TFL) in a MIMO
problem is to use the loop shaping techniques to match 6 and g curves as close as
possible at low, high and crossover frequency, so that system performance and
stability can be consistent with inputs in different directions. Low / high frequency
matching techniques by selecting the T' matrix were described in Section 3.2. Another

method used for loop shape matching at a certain selected frequency is by forming:

ClGmI-Al'T =1 (141)

where jo 1s selected frequency. T'c = I' M, where M is a so-called matching

matrix, and I' is the original I matrix. Then

M={C[GoI-A]'T}" (142)

The M matrix will be complex, and will be approximated by its real part. The new

matrix I'c = I'M should give good matching of the & and ¢ curves at the selected

frequency [19: 70 |.
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Sometimes in MIMO systems the outputs and inputs have different units or
large differences in magnitude. For instance, in the engine control problem, one
output is Rotations Per Minute (RPM) and normally has large magnitude. The other
output may be nozzle or compressor vane angle, where the unit is degrees and has
small magnitude. The 6 and ¢ curves will be widely separated, and prescribed loop
shape matching techniques will not make them close enough to each other. To solve
this problem, rescale the units or magnitude of state space matrices before applying

LQG/LTR. To scale the system, given the state space model:

X =Ax®+Bu® (143)
y ©=CxQ@ (144)

the scaled variables x'(t), u'(t), y'(t) are related to x (t), u (1), y (t) as:
X O=Sx@
u ®=S,u
y 0=S8Syy® (145)

where Sy, Sy, Sy are diagonal and invertible matrices. Substitute Eq (145) into Eq

(143) and (144) . The scaled state space model is

)'( ([)=SXAS_XIX.(I)‘FSXBS;]IU.(I) (146)

y (1=S,CSx (1 (147)

For the A-4 aircraft, the MIMO lateral and directional control model we used,
the two input and output units and magnitudes are cquivalent to each other, thus

scaling is not necessary.
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3.4.3 Nominal plant LOQG/LTR Compensator Design. The MIMO system TFL
singular value curves were shaped by using the low and high frequency matching
technique with g =.01 as shown in Figure 19. Choosing q = 300 and control weighting
matrix R as an identity matrix, the LTR singular value curves are also shown in Figure
19. The LTR did not fully recover the target loop shape, because of the compromising
between optimality, robustness, and bandwidth consideration. Both curves meet the
specifications. At the Dutch roll frequency, a mismatch of the plant poles and

compensator zeros is obvious.
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Figure 19 MIMO Nominal Plant TFL and LTR Singular Value Curves
The LQG/LTR compensator and closed loop system poles are listed in Table 8.

The compensator's zeros closely invert the plant's poles. The open loop plant
transmission zero is at - 207.3 rad/sec, so the plant inversion is only on low frequency

dynamics. Because the q value is not selected large enough, the compensator's pole
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did not goes to plant zero. The closed loop system does have a lightly damped Dutch
roll mode.

Table 8 Nominal Plant Compensator and Closed Loop System Poles and Zeros

poles Zeros
-14.17+40.86 i -327+4.28 1
-11.3.4£30.84 1 -1.4635
compensator (- 3529+1491; | -.0062
-49.29+20.69 i -20.06
-20

-.374+4 22 1

closed -.0062

loop -1.4432

system -10.24+.837 i
-19.74
-19.99

3.4.4 Static Output Feedback and LQG/LTR Compensator Design. The
complex, low damping Dutch roll poles need to be moved to a better damping location.
Two outputs are required to move the Dutch roll complex pair poles. Bank angle and
yaw rate outputs are selected to assign the Dutch roll mode to a better damping
location; choosing other outputs always causes an unstable spiral or roll mode. While
successfully assigning Dutch roll poles, the two actuator poles wandered randomly,
and one went to around 10 rad/sec. To avoid degraded actuator affects on system
performance, another two outputs, aileron and rudder deflection are fed back to fix the
actuator modes. Like the SISO problem, there is a certain gain selection or certain
region in the complex plane where the Dutch roll poles can be assigned without the
unassigned poles drifting to undesired location. The SOF inner closed loop reassigned
poles are [ -3.433 £ 2.6551, -.0135, -3.11, -20.98, -21.58], and the Dutch roll mode has

good damping ( {pr = 0.79 ). The roll and spiral modes are improved also. The static
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feedback gain matrix F is

_1.0016 -.0314 -.0646 .2448

F=1"0121 0481 .0323 -.4211

Standard LQG/LTR procedures and loop shape matching techniques are
applied to the SOF design with q=300, p = .01. The TFL and LTR singular value
curves are shown in Figure 20. Both curves clear the performance and robustness "
barriers ". The mismatched pole-zero peak of low damping Dutch roll mode
disappeared. The compensator and closed loop system poles and zeros are listed in
Table 9. The compensator still inverts the plant, but because the inner loop plant was
better conditioned, a low damping Dutch roll mode does not exist in the closed loop
system. The SOF method for this MIMO design demonstrated that undesired plant

inversion can be prevented.
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Figure 20 MIMO SOF Design TFL and LTR Singular Value Curves

79




Table 9 MIMO SOF Design Compensator and Closed Loop System Poles and Zeros

poles zeros
-14.29+40.51 i -3.50443.246 1
. -11.5%30.64 i -2.664
compensator | 367+14.88 i ~0139
-45.98+20.37 1 -21.09
-21
-.0193
closed -2.497
loop -3.01+3.352 i
system -10.18
-11.37

3.4.5 Robust Eigenstructure Assignment and LOG/LTR Compensator Design.
Because SOF method has good LQG/LTR design results, the desired poles for
cigenstructure assignment are chosen to be the same as the SOF design closed loop
poles (see Table 9). By this choice, the results of these two method can then be
compared with each other. The MIMO open loop plant with integrators augmented
into each control channel was used. The desired eigenvalues were weighted equally
with one, with no weighting on the eigenvectors. The LQREA program returned the

Kalman filter achievable eigenvalues as

~3.028+3.346i
-2.511
-.042
A, = diag -10.24
-11.23
21.08
21.12
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the cost function index was J = .0028 and the achievable eigenvalues are very close to
desired. The calculating time for this MIMO problem is approximately 30 minutes.

The Qg and Ry from the LQREA program were used to obtain the target
Kalman filter C®K; loop transter function. The singular value curves are shown in
Figure 21. The _g curve has very low value at low frequency and the specifications are

not met at low tfrequency. This undesired ¢

curve loop shape can not be improved
with the prescribed method. Because of the low g curve, i cannot be selected to a
higher value to decrease the bandwidth. This is a drawback when using the Robust
Eigenstructure Assignment algorithm with LQG/LTR compensator design. By using
the REA method, we lost the best nature of LQG/LTR methodology — target loop
transier function shaping — which gives designer the capability to construct the
required system performance and stability characteristics according to specifications.
In order not to violate the high frequency "barrier”, q=300 was choscn and the Kalman
filter loop shape was not fully recovered. The LTR singular value curves of the REA
design are also shown in Figure 21. It has same loop shape as the Kalman filter
singular value curves.

The LQG/LTR compensator and closed loop system poles and zeros are shown
in Table 10. The compensator doesn't invert the plant dynamics and it has the

dynamics required to assign closed loop poles as desired.
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Figure 21 MIMO REA Design CPKy and LTR Singular Value Curves

Table 10 MIMO REA Design Compensator and Closed Loop Poles and Zeros

poles

Zeros

compensator

-13.45+45.49 i
-11.73+29.00 i
-53.51+24.68 i
-33.88+13.42 i

-6.3944
-3.23+.871i
-20.85%.14 1
-.0628

closed
loop
system

-.045

-1.926
-6.36+3.85 1
-11.01+1.88 1
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3.4.6 Results Comparison . By looking at the LQG/LTR closed loop poles in
Table 8, 9, and 10, we see that SOF and REA design have the same assignability on
cigenvalues. REA has a larger assignable region in complex plane than SOF method.
From a time domain or transient response point of view, the REA method may be
better than the SOF method.

Bank angle step input responses from the three designs are shown in Figure
22. The SOF design's response has improved Dutch roll damping. The REA method
has large overshoot due to the closed loop bandwidth and cannot be reduced without
sacrificing sensitivity. All three designs give good tracking on bank angle input and
keep sideslip angle closed to zero. Sideslip step input does not have much practical
meaning from an aircraft {lying quality point of view, and is not given. The poor loop
shape of LQG/LTR open loop transter function GK in REA design isn't reflected here
in the step input response, since the input direction doesn't excite the shape of ¢
curve depicted.

Sensitivity singular value curves are shown in Figure 23. The SOF design
doesn't have the low damping peak at Dutch roll frequency that the nominal design
has. The REA design has poor sensitivity at low frequency.

The complementary sensitivity (T) singular value curves, shown in Figure 24,
display the same trend as the sensitivity.  The resonant peak of low damping Dutch
roll mode docs not exist in the SOF design.  The REA design has higher closed loop
bandwidth, causing higher o[ T} at high frequency and may result in poor noisc
rejection. The bank angle step input with noise response are shown in Figure 25; the
nominal and SOF designs reject noise very well. The REA design has poor noise
rejection capability as predicted by complementary sensitivity. The step input with
disturbances in sideslip angle and roll rate responses are shown in Figure 26; all

response have good disturbance rejection. The REA design doesn't show poor




response, and may be due to the input direction not exciting the shape of the ¢ curve.
The independent gain and phase margins for each design are listed in Table 11.
The SOF design has the best independent gain and phase margins. The REA design

has lower gain and margins.

Table 11 MIMO Independent Gain and Phase Margins

design nominal SOF REA

independent
gain margin | [ 804 411 [-23.42,5.72] | [-6.38, 3.64]

(db)

independent
phase margin +35.14 + 55.59 +30.15

(deg)
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Figure 25 MIMO Step Input with Noise Responses of Nominal, SOF, REA Design
(x coordinate is SIMULINK time unit, 100 = 1scc)
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Figure 26 ¢ Step Input with Disturbance Respose of Nominal, SOF, REA Design
(x coordinate is SIMULINK time unit, 10X = lsec)
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3.4.7 Robustness with Perturbed Plant . The same perturbation as in the
SISO plant is added to MIMO plant, using the same LQG/LTR compensators
obtained from the unperturbed plant design, and the same static gain matrix in SOF
design. The closed loop poles for the three perturbed systems are in Table 12. In all
three designs, dutch roll damping is reduced. Using the SOF and REA method the
poles are still well-damped and don't result in undesired plant inversion.

Table 12 MIMO perturbed plant closed loop poles

design nominal SOF REA
-.0062 -.0139 -.1108
losed 1 -1.44 -.4895 -2.513 .
Costie? | Jigorassi | 302233750 [-30284335i
-10.22+.828i | -10.1843 -10.23
-11.3118 -11.23

The sensitivity singular value curves are given in Figure 27. The SOF design G curve
was increased and g curve was reduced. The nominal and REA design are the same
as the unperturbed system. The complementary sensitivity curves are in Figure 28

and showed that all designs have about the same shape as the unperturbed plant.
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3.5 Summary

In aircraft longitudinal control, normally the lightly damped, low frequency
phugoid mode does not cause a problem in flying qualities. For conventional aircraft
pitch angle to elevator response, with the phugoid poles and the two zeros
(S+1/Te1),(S+1/Tgy) on real axis, the LQG/LTR compensator will not invert
the plant dynamics. Using SOF method cannot shift the phugoid poles far from their
original location, and the LQG/LTR design for the SOF inner closed loop plant doesn't
give too much improvement on overall closed loop system performance and stability
robustness. It the nominal plant has undesired modes at moderate frequency, like
lightly damped short period modes, an undesired plant inversion can be prevented by
using SOF method before the LQG/LTR compensator design. The REA method ofter
more flexibility on assigning eigenvalues.

In the A-4 aircraft lateral-directional MIMO control design, the SOF method
largely improved closed loop performance and stability robustness. The REA method
showed a drawback for MIMO system target loop shaping in LQG/LTR compensator
design, because once the Kalman filter or LQ Regulator state and control weighting
matrices are determined by the results of using the REA method, the loop shapes are
hard to adjust/. Thus, the REA method doesn't have frequency domain closed loop

system design flexibility.
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IV X-29 Aircraft System Design and Results Analyaia

Accounting for a moderate frequency unstable pole and non-minimum phasc
zero problem, we introduce the X-29 experimental forward sweep wing aircraft at sea
level, (.9 Mach flight condition. The X-29 is a unconventional flight vehicle. It use
canards and flaprons for pitch control instead of horizontal tail, so longitudinally it is a
MIMO system. The open loop plant of this MIMO system has one unstable pole and
a very low frequency, low damping complex pair phugoid mode. When inserting a
time delay into the system, a non-minimum phase zero is introduced. Even though
the X-29 aircraft reinforces the wing structure with a tailored composite wing skin of
the forward swept wing, it is still susceptible to wing divergence, a wing tip vertical
oscillatory motion relative to the wing root. It will be excited when aileror. control is
used for roll control, or when doing pitch control, lift is generated on the wings. This
structural mode is rare to see in conventional aircraft in the normal flight envelope.
Control system design definitely needs to take this structural mode into account. To
avoid this mode, the closed loop system bandwidth must be kept below the wing
bending mode frequency, or like Liebst and Garrad [ 16 ], an eigenstructure
assignment technique can be used to suppress this mode. Thus, the X-29 is
cxpected to represent the "worst” model for LQG/LTR design, so the results from

LQG/LTR with and without static output feedback can be compared.

4.1 Plant. The X-29 experimental aircraft nominal condition is sea level, 0.9
Mach. The longitudinal control is a MIMO system with pitch controlled by canards
and flaprons. The outputs are AOA and pitch angle. The MIMO state space A and B

matrices are given in Appendix A. The states, controls and outputs are
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[ airspeed (u)-fU/sec |
AOA (o) - deg

_| pixch angle @) - deg
pitch rate (q) - deg/sec

wig tip deflection - ft

| wign tip rate - ft/sec |

L3

_ |flapron deflection - deg
canard deflection - deg| °

AOA (@) }
pitch angle ©)

Table 13 X-29 Open Loop Plant Eigenvalues, Eigenvectors and Zeros

mode short period phugoid wing bending
eigenvalue | -11.907 7.306 | -.000041£.0491i | -9.87459.27i
1175 -0918 .0001+£.00009i | --0014+.00092i
0810 -.1343 .0577+.0653i -.00037+.00018i
sivenvector | 9648 -9812 -0032+£.00281 | 01461.02i
CIECIVECIOT] o183 | 0126 00017£.00015i | -.0029+.174i
2189 0926 .000061.000008i | 9990131
0041 -.0019 .00002+.000002i | -00002+.000002i
7eros -000148, -7.076165.17i

The open loop plant cigenvalues, eigenvectors and zeros are listed in Table

13. The plant has an unstable pole at 7.306 rad/sec, and is comparatively more

unstable than any aircraft. The phugoid mode is very slow ( @, = .049 rad/sec) and

very lightly damped ( {pno= .0008). It has a relatively low frequency wing bending

structural mode at 60 rad/sec. The plant is unstable and minimum phase. In order to
make the plant more difficult and to be more realistic for LQG/LTR design, a channel
of time delay (.05 sec) with Pade first order approximations are added to the plant, so

that one zero and one pole both at 40 rad/sec are added. The combination of unstable

and lightly damped poles, as well as non-minimum phase zero will introduce some

difficulty for LQG/LTR design.
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4.2 Nominal plant LQG/LTR compensator design. The same low and high
frequency matching technique as the A-4 aircraft MIMO design is applied. The
nominal plant TFL curves are plotted in Figure 29. There is a spiky resonant peak at
the phugoid frequency, and the curves are flat at low frequency, due to the low
frequency zero cancelled the integral action at low frequency, so it may not have
cnough gain for low frequency command tracking and disturbance rejection. The & and
o curves are widely separated at crossover frequency which makes the bandwidth

hard to predict and difficult to keep low.
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Figure 29 X-29 Nominal Plant TFL Singular Value Curve
In order to correct these problems, both control channels are augmented with
integrators; the 6 and g curves matching technique is applied at 10 rad/sec frequency.
The reshaped TFL curves are shown in Figure 30. Due to the unstable pole, the
minimum bandwidth is limited to 7.306 rad/sec, and y is selected to keep the

bandwidth above this frequency, so that the crossover frequency can be high enough to
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cover the unstable pole. Otherwise, the LQG/LTR compensator cannot "see” this
unstable pole, and closed loop system performance may be affected. Another
restriction on the selection of p is the wing bending mode frequency. The crossover
frequency needs to be kept lower than this frequency to avoid exciting the structural
mode. A value of g = 0.5 is selected and with this value the high frequency
robustness "barrier” is violated, but with q = 300 the high frequency robustness
requirement can be met. The LTR singular value curves are also shown in Figure 30.
The unsuccessful recovery of the target feedback loop shape for the non-minimum
phase zero frequency is obvious; fortunately this is not within the system bandwidth,
and should not affect the closed loop system, it also places a limit on the maximum

allowable bandwidth.
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Figure 30 X-29 Nominal Plant Reshaped TFL and LTR Singular Value Curves
The LQG/LTR compensator and closed loop system poles and zeros are shown
in Table 14. The compensator is stabilizing and the unstable short period pole went to

the left-half-plane and became a complex pair of poles. It has decent damping and
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natural frequency. The phugoid mode has disappeared, thus the compensator does

not closely invert the plant. The wing bending mode damping is reduced slightly.

Table 14 X-29 Nominal Design Compensator and Closed Poles and Zeros

poles Zeros
-48.66+85.74i -9.85+59.37i
-8.87+59.43i -2.58+1.25i
-30.4+48.17i -40
compensatorl 9 93+14.67i | -12.33
-.0001487 -.0001488
closed -9.98+59.26i
100 '7 .2-_'-9. 1 i
P -3.4743.44i
system 1 _ 000148

4.3 Static Output Feedback and LOQG/LTR Compensator Design. In the
nominal plant design, the unstable pole caused the minimum bandwidth limitation on
loop shaping and the lightly damped phugoid mode gave the singular value curve a
resonant peak. To avoid this problem, the unstable pole and lightly damped phugoid
poles are shifted to stable and better damping locations. By viewing the
corresponding eigenvector of the phugoid and unstable short period poles, airspeed,
AOA, and pitch angle are selected as outputs. The unstable pole is assigned to a
stable - 2.1 rad/sec location, and the phugoid poles to -.035+.035i. The achieved
closed loop poles and the static gain matrix are:

inner closed loop poles = [-2.1, -.035+.035i, -11.62+57.88i, -14.9+14.15i ],
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_{-.0416 -1.3961 -.0298

F=170047 -.104 -0033

With the SOF inner loop closed for the LQG/LTR compensator design, the
and ¢ curves matching techniques is used close to crossover frequency. Since the
unstable pole is gone, g can be chosen to lower the system bandwidth to any desired
frequency. A value of q = 300 was sclected; the best TFL and LTR loop shapes
obtained are shown in Figure 31. At very low frequency some part of the g curve
doesn't clear the low frequency "barrier’, but the frequency is so low that it should not

affect closed loop system performance.
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Figure 31 X-29 SOF Design TFL and LTR Singular Value Curves
The LQG/LTR compensator and closed loop system poles and zeros are shown
in Table 15. The short period and wing bending modes have better damping than the

nominal design.
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Table 15 X-29 SOF Design Compensator and Closed Loop System Poles and Zeros

poles zZeros
-47.89+7.8i -11.54457.56i
-9.85+5.95i -12.42+14.08i
. -33.871+40.07i -4.843
COMPENSAtor} ¢4 24+17.99; -.0801
-.000148 -.000149
-.00015
closed -.081
loop -2.42
system --7.925+3.56i
-10.19+59.77i

4.4 Result comparisons. From the A-4 aircraft MIMO plant design, we know
that the robust eigenstructure assignment method is good for eigenstructure
assignment, but is not suitable for follow-on LQG/LTR loop shaping. Hence, we will
not use the REA method for the X-29 aircraft MIMO system design.

The closed loop system poles of the nominal and SOF designs are not very
different, because the compensators don't invert all the plant dynamics. However, by
looking at the closed loop system response of step pitch angle input shown in Figure
32, the SOF method has better damping and less overshoot due to the system
bandwidth being reduced. Non-minimum phase response ( initial response direction
opposite to the input direction ) is not very apparent, because the non-minimum zero
is located at relatively high frequency. The complementary sensitivity singular value
curves are shown in Figure 33. The nominal design has a large peak close to wing

bending mode frequency.
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Due to the higher closed loop system bandwidth, the nominal design has a higher
maximum singular value, thus less robustness at high frequency. Figure 34 shows
that both design have good noise rejection; this is due to the nominal design having
low enough GK gain at high frequency. Figure 35 is the sensitivity singular value
plots for both designs. Because the designed SOF target feedback loop shape has a
lower minimum singular value, the sensitivity of the SOF design is higher than the
nominal design, but this should not affect command tracking and disturbance rejecting
capability. The nominal design has a peaked sensitivity which is higher than the SOF
design. This affects the independent stability margins. Figure 36 shows that both
designs have good disturbance rejection.

The independent gain and phase margins are given in Table 16. The SOF
design has better stability margins; it is more robust.

Table 16 X-29 Stability Margins of Nominal and SOF Designs

design nominal SOF

independent | 53 357 [-16.36, 5.33]
gam margm

(db)

independent
phase margin
(deg)

+26.44 +50.18
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4.5 Summary

Using the SOF method on the X-29 experimental aircraft, LQG/LTR
compensator design with unstable, non-minimum phase plant and relatively low
frequency structural wing bending mode. A pair of phugoid poles were assigned
sucessfully to better damping locations. One unstable short period pole was assigned
to left-halt-plane. With this design, the minimum bandwidth limitation can be
removed; the closed loop system is not too susceptible to wing bending. Sysiem
robustness 1s improved, this is shown by reduced complementary sensitivity and

increased independent gain and phase margins,

107




V  Conclusion and Recommendation

This thesis showed that static output feedback (SOF) and robust
eigenstructure assignment (REA) methods can be used to improve LQG/LTR design
for aircraft flight control systems, when the plant has lightly damped, low frequency
poles. In Chapter II, background information for Linear Quadratic Gaussian and Loop
Transfer Recover (LQG/LTR) was developed. The procedure of using static output
feedback to reassign system poles was also presented. The algorithms of LQG/LTR
and use of static output feedback are written in MATLAB M-File and given in
Appendix B. The robust eigenstructure assignment algorithm was developed by
Huckabone [ 9: 78-103 ]; the LQREA program used by Huckabone for eigenstructure
assignment was used here to assign the closed loop Kalman filter eigenvalues.

Three aircraft models were used for designing LQG/LTR compensators with
the stated methods. An A-4 aircraft longitudinal control is used for a SISO model; it
has a pair of lightly damped phugoid poles. A-4 lateral directional control model which
has lightly damped Dutch roll mode, and X-29 experimental aircraft longitudinal control
model which has lightly damped phugoid, unstable short period, wing bending
structural modes and non-minimum phase zero, were used as MIMO system designs.
The X-29 model only applied Static Output Feedback method, since the Robust
Eigenstructure Assignment method has deficiencies ( observed during the A-4 MIMO
system loop shaping in LQG/LTR compensator design). From the results presented

in Chapter III and IV, following conclusions are obtained :

Static Output Feedback method
In the A-4 MIMO system design, nominal plant with a low damping Dutch roll
mode, the LQG/LTR designed closed loop system has a lightly damped Dutch roll

mode. The undesired plant inversion made the closed loop time response bad. Under
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the Static Output Feedback method, the Dutch roll poles can be exactly assigned to
improve damping location as desired, but the assignable region of the desired poles is
limited, if system stability is considered. The output must be selected correctly to
assign the specific poles. This inner closed loop plant is then used for the LQG/LTR
compensator design. The closed loop system has much better damping and the
stability and robustness is also improved. In the X-29 aircraft model, the static output
feedback method also successfully assigned better damping phugoid poles, and the
system bandwidth can be reduced, making the aircraft less susceptible to the wing
bending mode. After using the Static Output Feedback method to move the unstable
pole to the left -half- plane, the closed loop system of LQG/LTR design improved
robustness. This is shown by reduced high frequency complementary sensitivity and
better independent gain and phase margins.

In SISO model design we didn't obtain much improvement by using Static
Output Feedback method. This is due to the plant not having characteristics that
allow large pole movement from the nominal plant, when using single loop constant
gain feedback. If the plant has low damping short period poles instead of low damping,
low frequency phugoid poles, and no transmission zero close to the undesired poles,
then the undesired plant inversion can be avoided by using Static Output Feedback
method.

The robustness of the gain and LQG/LTR compensator were checked by
perturbing the plant with reduced damping poles. The perturbed closed system is still

stable and performs reasonably well.
Robust Eigenstructure Assignment method

For both the SISO and MIMO A-4 aircraft models, the LQREA program was

used to assign the closed loop Kalman filter achievable eigenvalues close to the
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desired eigenvalues. In both designs, the eigenvalues can be moved closer to the
vicinity of the desired poles than the SOF method. Kalman filter closed loop
eigenvalues can be significantly changed from the nominal open loop plant. In the
SISO problem, after using the REA method the LQG/LTR closed loop system has the
best time response, but the gain margin was reduced, with the phase margin slightly
improved. In the MIMO problem, after the closed loop Kalman filter poles were
reassigned, the LQREA program returned the state weighting matrix Q¢ and control
weighting matrix Ry. With this fixed Qf and Ry, we can not reshape the Kalman filter
transfer function using the standard LQG/LTR loop shaping techniques; that is, the
frequency domain loop shaping is not feasible if we use the Robust Eigenstructure
Assignment algorithm. For most system, where full state feedback is not possible,
combined LQ Regulator and estimator (LQG) is required for compensator design. If
the Robust Eigenstructure Assignment method for LQG/LTR compensator design is
used, the performance and stability robustness will be hard to design.

The Robust Eigenstructure Assignment algorithm was designed mainly for the
usage of assign eigenstructure with the constraints of closed loop eigenstructure of
LQR or Kalman filter, not for LQG/LTR compensator design. And the comparisons on
performances and stability robustness with SOF design were based on the LQG/LTR
design results. Thus the result of comparisons did not reflect either designing

methodology is superior than the other.

Recommendation for further research

In LQG/LTR design, the closed loop poles are determined by the designed
Kalman filter and the tuned LQ Regulator. From the results of this study, the
compensator will invert the plant dynamics if there is no system transmission zeros

close to system pole. If there is transmission zero on the real axis which close to any
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of the poles, then the pole will not have compensator's zero close to it and the plant
inversion will not happen. The closeness of a compensator zero to an open loop plant
pole is also affected by the I matrix chosen for loop shaping. Compensator and plant
pole-zero relations will affect the closed loop system characteristics. How the
compensator characteristics are affected by transmission zeros and the choosing of
the I matrix in LQG/LTR design is worth some study.

It has been shown that the Robust Eigenstructure Assignment algorithm is
excellent for assigning eigenstructure with good robustness. The LQREA program
used is the combination of several subroutines in different softwares; it is mainly for
assigning the eigenstructure of a full state LQ Regulator or Kalman filter design.
Expanding it for other robust compensator designs like LQG/LTR, or changing the
form of the returned Q and R matrices, may improved the flexibility of using the output

of the program.
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Appendix A : Plant State Space Models

A-4 Aircraft Longitudinal Control State Space A, B matrices :

cRocooo

-0.0129 -0.0651 0 -0.5585 O
-0.0091 -0.8166  1.0000 0 -0.0896
A = -0.0201 -12.3900 -1.4200 0 - 19.4400 B =
0 0 1.0000 0 0 ’
0 0 0 0 - 20.0000
A-4 Aircraft Lateral Directional Control State Space A, B Matrices :
-0.228 0 0.05 -1 -0.074  0.79 -
-349  -1.516 0 0.875 426 199.2
0 1 0 0 0 0
A= 18.73  0.0398 0 -0.565 96 -166 ] , B =
0 0 0 0 -20 0
0 0 0 0 0 -20
X-29 Longitudinal Control State Space A, B Matrices :
000526  .092764 -.562 -.2536  -.1405 .0015
-.0036887 -2.8810  -.0004672 1.006 4.3699 -.046879
0 0 0 1 0 0
A =1 .000116 79.560 00001475 -.831  -60.447 1.0096
0 0 0 0 0 1
-..439  -543.84  -.00000118 1.1589 -3642 -20.64
1.2296 .49255
-5.5524 -15.324
0 0
B = -233.28 1839.9
0 0
-1298.5 147.50
0 0
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Appendix B : Static Output Feedback Eigenstructure Assignment

% Assign eigenvalues and eigenvectors:

%%do a loop to calculate different eigenvalues with increasing
damping.

% %calculate projection of desired eigenvector on achievable
eigenvector.

for imh=4.3:-.5:0
reh=((4.34)"2-(imh)"2)7.5;
eul=-reh+i*imh

Is=inv(eul *eye(6)-am)*bm;
val=Is*inv(ls'*1s)*1s"*vdd;

eu2=-21;
Is=inv(eu2*eye(6)-am)*bm,;
va2=ls*inv(ls'*1s)*Is'*vdal;

euld=-21;
Is=inv(eu3*eye(6)-am)*bm;

va3=Is*inv(ls'*1s)*Is'*vda2;

% Achievable eigenvector matrix
va=[val va2 va3];

% model transformation
ti=[bm tp]
at=inv(ti)*am*ti;
ct=cm*ti;

vt=inv(ti)*va;

ZPartition A matrix
al=at(1:2,:);

%separate real and imaginary part of eigenvector
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vtl=[real(vt(:,1)) imag(vt(:,1)) vt(:,2) vt(:,3) I;

%calculate Z matrix and separate real and imaginary parts
z=[eul *vt(1:2,1) eu2*vt(1:2,2) eud*vt(1:2,3) 1];
zl=[real(z(1:2,1)) imag(z(1:2,1)) z(1:2,2) z(1:2,3) 1;

%calculate output feedback gain matrix

f=(z1-al*vtl)*inv(ct*vtl)

%plot the movement of assigned ploes while desired pole select

differently

ac=am+bm*f*csl;
[p.z]=pzmap(ac,bm,cm,dml)
axis([-22,8,-10,10]);
pzmap(ac,bm,csl,dml)

%if eu2==-.5

if imh==4.32

hold

end

end

hold off

title('poles movement w/ S.O.F=(phi,r),const Wn, actuator ')
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